| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							disjif.1 | 
							⊢ Ⅎ 𝑥 𝐶  | 
						
						
							| 2 | 
							
								
							 | 
							disjif.2 | 
							⊢ ( 𝑥  =  𝑌  →  𝐵  =  𝐶 )  | 
						
						
							| 3 | 
							
								
							 | 
							inelcm | 
							⊢ ( ( 𝑍  ∈  𝐵  ∧  𝑍  ∈  𝐶 )  →  ( 𝐵  ∩  𝐶 )  ≠  ∅ )  | 
						
						
							| 4 | 
							
								1 2
							 | 
							disji2f | 
							⊢ ( ( Disj  𝑥  ∈  𝐴 𝐵  ∧  ( 𝑥  ∈  𝐴  ∧  𝑌  ∈  𝐴 )  ∧  𝑥  ≠  𝑌 )  →  ( 𝐵  ∩  𝐶 )  =  ∅ )  | 
						
						
							| 5 | 
							
								4
							 | 
							3expia | 
							⊢ ( ( Disj  𝑥  ∈  𝐴 𝐵  ∧  ( 𝑥  ∈  𝐴  ∧  𝑌  ∈  𝐴 ) )  →  ( 𝑥  ≠  𝑌  →  ( 𝐵  ∩  𝐶 )  =  ∅ ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							necon1d | 
							⊢ ( ( Disj  𝑥  ∈  𝐴 𝐵  ∧  ( 𝑥  ∈  𝐴  ∧  𝑌  ∈  𝐴 ) )  →  ( ( 𝐵  ∩  𝐶 )  ≠  ∅  →  𝑥  =  𝑌 ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							3impia | 
							⊢ ( ( Disj  𝑥  ∈  𝐴 𝐵  ∧  ( 𝑥  ∈  𝐴  ∧  𝑌  ∈  𝐴 )  ∧  ( 𝐵  ∩  𝐶 )  ≠  ∅ )  →  𝑥  =  𝑌 )  | 
						
						
							| 8 | 
							
								3 7
							 | 
							syl3an3 | 
							⊢ ( ( Disj  𝑥  ∈  𝐴 𝐵  ∧  ( 𝑥  ∈  𝐴  ∧  𝑌  ∈  𝐴 )  ∧  ( 𝑍  ∈  𝐵  ∧  𝑍  ∈  𝐶 ) )  →  𝑥  =  𝑌 )  |