Step |
Hyp |
Ref |
Expression |
1 |
|
disjif2.1 |
⊢ Ⅎ 𝑥 𝐴 |
2 |
|
disjif2.2 |
⊢ Ⅎ 𝑥 𝐶 |
3 |
|
disjif2.3 |
⊢ ( 𝑥 = 𝑌 → 𝐵 = 𝐶 ) |
4 |
|
inelcm |
⊢ ( ( 𝑍 ∈ 𝐵 ∧ 𝑍 ∈ 𝐶 ) → ( 𝐵 ∩ 𝐶 ) ≠ ∅ ) |
5 |
1
|
disjorsf |
⊢ ( Disj 𝑥 ∈ 𝐴 𝐵 ↔ ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( 𝑦 = 𝑧 ∨ ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) |
6 |
|
equequ1 |
⊢ ( 𝑦 = 𝑥 → ( 𝑦 = 𝑧 ↔ 𝑥 = 𝑧 ) ) |
7 |
|
csbeq1 |
⊢ ( 𝑦 = 𝑥 → ⦋ 𝑦 / 𝑥 ⦌ 𝐵 = ⦋ 𝑥 / 𝑥 ⦌ 𝐵 ) |
8 |
|
csbid |
⊢ ⦋ 𝑥 / 𝑥 ⦌ 𝐵 = 𝐵 |
9 |
7 8
|
eqtrdi |
⊢ ( 𝑦 = 𝑥 → ⦋ 𝑦 / 𝑥 ⦌ 𝐵 = 𝐵 ) |
10 |
9
|
ineq1d |
⊢ ( 𝑦 = 𝑥 → ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) = ( 𝐵 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) ) |
11 |
10
|
eqeq1d |
⊢ ( 𝑦 = 𝑥 → ( ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) = ∅ ↔ ( 𝐵 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) |
12 |
6 11
|
orbi12d |
⊢ ( 𝑦 = 𝑥 → ( ( 𝑦 = 𝑧 ∨ ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) = ∅ ) ↔ ( 𝑥 = 𝑧 ∨ ( 𝐵 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) ) |
13 |
|
eqeq2 |
⊢ ( 𝑧 = 𝑌 → ( 𝑥 = 𝑧 ↔ 𝑥 = 𝑌 ) ) |
14 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑌 |
15 |
14 2 3
|
csbhypf |
⊢ ( 𝑧 = 𝑌 → ⦋ 𝑧 / 𝑥 ⦌ 𝐵 = 𝐶 ) |
16 |
15
|
ineq2d |
⊢ ( 𝑧 = 𝑌 → ( 𝐵 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) = ( 𝐵 ∩ 𝐶 ) ) |
17 |
16
|
eqeq1d |
⊢ ( 𝑧 = 𝑌 → ( ( 𝐵 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) = ∅ ↔ ( 𝐵 ∩ 𝐶 ) = ∅ ) ) |
18 |
13 17
|
orbi12d |
⊢ ( 𝑧 = 𝑌 → ( ( 𝑥 = 𝑧 ∨ ( 𝐵 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) = ∅ ) ↔ ( 𝑥 = 𝑌 ∨ ( 𝐵 ∩ 𝐶 ) = ∅ ) ) ) |
19 |
12 18
|
rspc2v |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) → ( ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( 𝑦 = 𝑧 ∨ ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) = ∅ ) → ( 𝑥 = 𝑌 ∨ ( 𝐵 ∩ 𝐶 ) = ∅ ) ) ) |
20 |
5 19
|
syl5bi |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) → ( Disj 𝑥 ∈ 𝐴 𝐵 → ( 𝑥 = 𝑌 ∨ ( 𝐵 ∩ 𝐶 ) = ∅ ) ) ) |
21 |
20
|
impcom |
⊢ ( ( Disj 𝑥 ∈ 𝐴 𝐵 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) → ( 𝑥 = 𝑌 ∨ ( 𝐵 ∩ 𝐶 ) = ∅ ) ) |
22 |
21
|
ord |
⊢ ( ( Disj 𝑥 ∈ 𝐴 𝐵 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) → ( ¬ 𝑥 = 𝑌 → ( 𝐵 ∩ 𝐶 ) = ∅ ) ) |
23 |
22
|
necon1ad |
⊢ ( ( Disj 𝑥 ∈ 𝐴 𝐵 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) → ( ( 𝐵 ∩ 𝐶 ) ≠ ∅ → 𝑥 = 𝑌 ) ) |
24 |
23
|
3impia |
⊢ ( ( Disj 𝑥 ∈ 𝐴 𝐵 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ∧ ( 𝐵 ∩ 𝐶 ) ≠ ∅ ) → 𝑥 = 𝑌 ) |
25 |
4 24
|
syl3an3 |
⊢ ( ( Disj 𝑥 ∈ 𝐴 𝐵 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ∧ ( 𝑍 ∈ 𝐵 ∧ 𝑍 ∈ 𝐶 ) ) → 𝑥 = 𝑌 ) |