Metamath Proof Explorer


Theorem disjif2

Description: Property of a disjoint collection: if B ( x ) and B ( Y ) = D have a common element Z , then x = Y . (Contributed by Thierry Arnoux, 6-Apr-2017)

Ref Expression
Hypotheses disjif2.1 𝑥 𝐴
disjif2.2 𝑥 𝐶
disjif2.3 ( 𝑥 = 𝑌𝐵 = 𝐶 )
Assertion disjif2 ( ( Disj 𝑥𝐴 𝐵 ∧ ( 𝑥𝐴𝑌𝐴 ) ∧ ( 𝑍𝐵𝑍𝐶 ) ) → 𝑥 = 𝑌 )

Proof

Step Hyp Ref Expression
1 disjif2.1 𝑥 𝐴
2 disjif2.2 𝑥 𝐶
3 disjif2.3 ( 𝑥 = 𝑌𝐵 = 𝐶 )
4 inelcm ( ( 𝑍𝐵𝑍𝐶 ) → ( 𝐵𝐶 ) ≠ ∅ )
5 1 disjorsf ( Disj 𝑥𝐴 𝐵 ↔ ∀ 𝑦𝐴𝑧𝐴 ( 𝑦 = 𝑧 ∨ ( 𝑦 / 𝑥 𝐵 𝑧 / 𝑥 𝐵 ) = ∅ ) )
6 equequ1 ( 𝑦 = 𝑥 → ( 𝑦 = 𝑧𝑥 = 𝑧 ) )
7 csbeq1 ( 𝑦 = 𝑥 𝑦 / 𝑥 𝐵 = 𝑥 / 𝑥 𝐵 )
8 csbid 𝑥 / 𝑥 𝐵 = 𝐵
9 7 8 eqtrdi ( 𝑦 = 𝑥 𝑦 / 𝑥 𝐵 = 𝐵 )
10 9 ineq1d ( 𝑦 = 𝑥 → ( 𝑦 / 𝑥 𝐵 𝑧 / 𝑥 𝐵 ) = ( 𝐵 𝑧 / 𝑥 𝐵 ) )
11 10 eqeq1d ( 𝑦 = 𝑥 → ( ( 𝑦 / 𝑥 𝐵 𝑧 / 𝑥 𝐵 ) = ∅ ↔ ( 𝐵 𝑧 / 𝑥 𝐵 ) = ∅ ) )
12 6 11 orbi12d ( 𝑦 = 𝑥 → ( ( 𝑦 = 𝑧 ∨ ( 𝑦 / 𝑥 𝐵 𝑧 / 𝑥 𝐵 ) = ∅ ) ↔ ( 𝑥 = 𝑧 ∨ ( 𝐵 𝑧 / 𝑥 𝐵 ) = ∅ ) ) )
13 eqeq2 ( 𝑧 = 𝑌 → ( 𝑥 = 𝑧𝑥 = 𝑌 ) )
14 nfcv 𝑥 𝑌
15 14 2 3 csbhypf ( 𝑧 = 𝑌 𝑧 / 𝑥 𝐵 = 𝐶 )
16 15 ineq2d ( 𝑧 = 𝑌 → ( 𝐵 𝑧 / 𝑥 𝐵 ) = ( 𝐵𝐶 ) )
17 16 eqeq1d ( 𝑧 = 𝑌 → ( ( 𝐵 𝑧 / 𝑥 𝐵 ) = ∅ ↔ ( 𝐵𝐶 ) = ∅ ) )
18 13 17 orbi12d ( 𝑧 = 𝑌 → ( ( 𝑥 = 𝑧 ∨ ( 𝐵 𝑧 / 𝑥 𝐵 ) = ∅ ) ↔ ( 𝑥 = 𝑌 ∨ ( 𝐵𝐶 ) = ∅ ) ) )
19 12 18 rspc2v ( ( 𝑥𝐴𝑌𝐴 ) → ( ∀ 𝑦𝐴𝑧𝐴 ( 𝑦 = 𝑧 ∨ ( 𝑦 / 𝑥 𝐵 𝑧 / 𝑥 𝐵 ) = ∅ ) → ( 𝑥 = 𝑌 ∨ ( 𝐵𝐶 ) = ∅ ) ) )
20 5 19 syl5bi ( ( 𝑥𝐴𝑌𝐴 ) → ( Disj 𝑥𝐴 𝐵 → ( 𝑥 = 𝑌 ∨ ( 𝐵𝐶 ) = ∅ ) ) )
21 20 impcom ( ( Disj 𝑥𝐴 𝐵 ∧ ( 𝑥𝐴𝑌𝐴 ) ) → ( 𝑥 = 𝑌 ∨ ( 𝐵𝐶 ) = ∅ ) )
22 21 ord ( ( Disj 𝑥𝐴 𝐵 ∧ ( 𝑥𝐴𝑌𝐴 ) ) → ( ¬ 𝑥 = 𝑌 → ( 𝐵𝐶 ) = ∅ ) )
23 22 necon1ad ( ( Disj 𝑥𝐴 𝐵 ∧ ( 𝑥𝐴𝑌𝐴 ) ) → ( ( 𝐵𝐶 ) ≠ ∅ → 𝑥 = 𝑌 ) )
24 23 3impia ( ( Disj 𝑥𝐴 𝐵 ∧ ( 𝑥𝐴𝑌𝐴 ) ∧ ( 𝐵𝐶 ) ≠ ∅ ) → 𝑥 = 𝑌 )
25 4 24 syl3an3 ( ( Disj 𝑥𝐴 𝐵 ∧ ( 𝑥𝐴𝑌𝐴 ) ∧ ( 𝑍𝐵𝑍𝐶 ) ) → 𝑥 = 𝑌 )