Metamath Proof Explorer


Theorem disjimi

Description: Every disjoint relation generates equivalent cosets by the relation, inference version. (Contributed by Peter Mazsa, 30-Sep-2021)

Ref Expression
Hypothesis disjimi.1 Disj 𝑅
Assertion disjimi EqvRel ≀ 𝑅

Proof

Step Hyp Ref Expression
1 disjimi.1 Disj 𝑅
2 disjim ( Disj 𝑅 → EqvRel ≀ 𝑅 )
3 1 2 ax-mp EqvRel ≀ 𝑅