Metamath Proof Explorer


Theorem disjin

Description: If a collection is disjoint, so is the collection of the intersections with a given set. (Contributed by Thierry Arnoux, 14-Feb-2017)

Ref Expression
Assertion disjin ( Disj 𝑥𝐵 𝐶Disj 𝑥𝐵 ( 𝐶𝐴 ) )

Proof

Step Hyp Ref Expression
1 elinel1 ( 𝑦 ∈ ( 𝐶𝐴 ) → 𝑦𝐶 )
2 1 rmoimi ( ∃* 𝑥𝐵 𝑦𝐶 → ∃* 𝑥𝐵 𝑦 ∈ ( 𝐶𝐴 ) )
3 2 alimi ( ∀ 𝑦 ∃* 𝑥𝐵 𝑦𝐶 → ∀ 𝑦 ∃* 𝑥𝐵 𝑦 ∈ ( 𝐶𝐴 ) )
4 df-disj ( Disj 𝑥𝐵 𝐶 ↔ ∀ 𝑦 ∃* 𝑥𝐵 𝑦𝐶 )
5 df-disj ( Disj 𝑥𝐵 ( 𝐶𝐴 ) ↔ ∀ 𝑦 ∃* 𝑥𝐵 𝑦 ∈ ( 𝐶𝐴 ) )
6 3 4 5 3imtr4i ( Disj 𝑥𝐵 𝐶Disj 𝑥𝐵 ( 𝐶𝐴 ) )