Description: If a collection is disjoint, so is the collection of the intersections with a given set. (Contributed by Thierry Arnoux, 14-Feb-2017)
Ref | Expression | ||
---|---|---|---|
Assertion | disjin | ⊢ ( Disj 𝑥 ∈ 𝐵 𝐶 → Disj 𝑥 ∈ 𝐵 ( 𝐶 ∩ 𝐴 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elinel1 | ⊢ ( 𝑦 ∈ ( 𝐶 ∩ 𝐴 ) → 𝑦 ∈ 𝐶 ) | |
2 | 1 | rmoimi | ⊢ ( ∃* 𝑥 ∈ 𝐵 𝑦 ∈ 𝐶 → ∃* 𝑥 ∈ 𝐵 𝑦 ∈ ( 𝐶 ∩ 𝐴 ) ) |
3 | 2 | alimi | ⊢ ( ∀ 𝑦 ∃* 𝑥 ∈ 𝐵 𝑦 ∈ 𝐶 → ∀ 𝑦 ∃* 𝑥 ∈ 𝐵 𝑦 ∈ ( 𝐶 ∩ 𝐴 ) ) |
4 | df-disj | ⊢ ( Disj 𝑥 ∈ 𝐵 𝐶 ↔ ∀ 𝑦 ∃* 𝑥 ∈ 𝐵 𝑦 ∈ 𝐶 ) | |
5 | df-disj | ⊢ ( Disj 𝑥 ∈ 𝐵 ( 𝐶 ∩ 𝐴 ) ↔ ∀ 𝑦 ∃* 𝑥 ∈ 𝐵 𝑦 ∈ ( 𝐶 ∩ 𝐴 ) ) | |
6 | 3 4 5 | 3imtr4i | ⊢ ( Disj 𝑥 ∈ 𝐵 𝐶 → Disj 𝑥 ∈ 𝐵 ( 𝐶 ∩ 𝐴 ) ) |