| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							disjinfi.b | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐵  ∈  𝑉 )  | 
						
						
							| 2 | 
							
								
							 | 
							disjinfi.d | 
							⊢ ( 𝜑  →  Disj  𝑥  ∈  𝐴 𝐵 )  | 
						
						
							| 3 | 
							
								
							 | 
							disjinfi.c | 
							⊢ ( 𝜑  →  𝐶  ∈  Fin )  | 
						
						
							| 4 | 
							
								
							 | 
							inss2 | 
							⊢ ( ∪  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∩  𝐶 )  ⊆  𝐶  | 
						
						
							| 5 | 
							
								
							 | 
							ssfi | 
							⊢ ( ( 𝐶  ∈  Fin  ∧  ( ∪  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∩  𝐶 )  ⊆  𝐶 )  →  ( ∪  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∩  𝐶 )  ∈  Fin )  | 
						
						
							| 6 | 
							
								3 4 5
							 | 
							sylancl | 
							⊢ ( 𝜑  →  ( ∪  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∩  𝐶 )  ∈  Fin )  | 
						
						
							| 7 | 
							
								4
							 | 
							a1i | 
							⊢ ( 𝜑  →  ( ∪  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∩  𝐶 )  ⊆  𝐶 )  | 
						
						
							| 8 | 
							
								3 7
							 | 
							ssexd | 
							⊢ ( 𝜑  →  ( ∪  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∩  𝐶 )  ∈  V )  | 
						
						
							| 9 | 
							
								
							 | 
							elinel1 | 
							⊢ ( 𝑦  ∈  ( ∪  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∩  𝐶 )  →  𝑦  ∈  ∪  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  | 
						
						
							| 10 | 
							
								
							 | 
							eluni2 | 
							⊢ ( 𝑦  ∈  ∪  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ↔  ∃ 𝑤  ∈  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 ) 𝑦  ∈  𝑤 )  | 
						
						
							| 11 | 
							
								10
							 | 
							biimpi | 
							⊢ ( 𝑦  ∈  ∪  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 )  →  ∃ 𝑤  ∈  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 ) 𝑦  ∈  𝑤 )  | 
						
						
							| 12 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝑥  ∈  𝐴  ↦  𝐵 )  =  ( 𝑥  ∈  𝐴  ↦  𝐵 )  | 
						
						
							| 13 | 
							
								12
							 | 
							elrnmpt | 
							⊢ ( 𝑤  ∈  V  →  ( 𝑤  ∈  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ↔  ∃ 𝑥  ∈  𝐴 𝑤  =  𝐵 ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							elv | 
							⊢ ( 𝑤  ∈  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ↔  ∃ 𝑥  ∈  𝐴 𝑤  =  𝐵 )  | 
						
						
							| 15 | 
							
								14
							 | 
							biimpi | 
							⊢ ( 𝑤  ∈  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 )  →  ∃ 𝑥  ∈  𝐴 𝑤  =  𝐵 )  | 
						
						
							| 16 | 
							
								15
							 | 
							adantr | 
							⊢ ( ( 𝑤  ∈  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∧  𝑦  ∈  𝑤 )  →  ∃ 𝑥  ∈  𝐴 𝑤  =  𝐵 )  | 
						
						
							| 17 | 
							
								
							 | 
							nfmpt1 | 
							⊢ Ⅎ 𝑥 ( 𝑥  ∈  𝐴  ↦  𝐵 )  | 
						
						
							| 18 | 
							
								17
							 | 
							nfrn | 
							⊢ Ⅎ 𝑥 ran  ( 𝑥  ∈  𝐴  ↦  𝐵 )  | 
						
						
							| 19 | 
							
								18
							 | 
							nfcri | 
							⊢ Ⅎ 𝑥 𝑤  ∈  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 )  | 
						
						
							| 20 | 
							
								
							 | 
							nfv | 
							⊢ Ⅎ 𝑥 𝑦  ∈  𝑤  | 
						
						
							| 21 | 
							
								19 20
							 | 
							nfan | 
							⊢ Ⅎ 𝑥 ( 𝑤  ∈  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∧  𝑦  ∈  𝑤 )  | 
						
						
							| 22 | 
							
								
							 | 
							simpl | 
							⊢ ( ( 𝑦  ∈  𝑤  ∧  𝑤  =  𝐵 )  →  𝑦  ∈  𝑤 )  | 
						
						
							| 23 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝑦  ∈  𝑤  ∧  𝑤  =  𝐵 )  →  𝑤  =  𝐵 )  | 
						
						
							| 24 | 
							
								22 23
							 | 
							eleqtrd | 
							⊢ ( ( 𝑦  ∈  𝑤  ∧  𝑤  =  𝐵 )  →  𝑦  ∈  𝐵 )  | 
						
						
							| 25 | 
							
								24
							 | 
							ex | 
							⊢ ( 𝑦  ∈  𝑤  →  ( 𝑤  =  𝐵  →  𝑦  ∈  𝐵 ) )  | 
						
						
							| 26 | 
							
								25
							 | 
							a1d | 
							⊢ ( 𝑦  ∈  𝑤  →  ( 𝑥  ∈  𝐴  →  ( 𝑤  =  𝐵  →  𝑦  ∈  𝐵 ) ) )  | 
						
						
							| 27 | 
							
								26
							 | 
							adantl | 
							⊢ ( ( 𝑤  ∈  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∧  𝑦  ∈  𝑤 )  →  ( 𝑥  ∈  𝐴  →  ( 𝑤  =  𝐵  →  𝑦  ∈  𝐵 ) ) )  | 
						
						
							| 28 | 
							
								21 27
							 | 
							reximdai | 
							⊢ ( ( 𝑤  ∈  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∧  𝑦  ∈  𝑤 )  →  ( ∃ 𝑥  ∈  𝐴 𝑤  =  𝐵  →  ∃ 𝑥  ∈  𝐴 𝑦  ∈  𝐵 ) )  | 
						
						
							| 29 | 
							
								16 28
							 | 
							mpd | 
							⊢ ( ( 𝑤  ∈  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∧  𝑦  ∈  𝑤 )  →  ∃ 𝑥  ∈  𝐴 𝑦  ∈  𝐵 )  | 
						
						
							| 30 | 
							
								29
							 | 
							ex | 
							⊢ ( 𝑤  ∈  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 )  →  ( 𝑦  ∈  𝑤  →  ∃ 𝑥  ∈  𝐴 𝑦  ∈  𝐵 ) )  | 
						
						
							| 31 | 
							
								30
							 | 
							a1i | 
							⊢ ( 𝑦  ∈  ∪  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 )  →  ( 𝑤  ∈  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 )  →  ( 𝑦  ∈  𝑤  →  ∃ 𝑥  ∈  𝐴 𝑦  ∈  𝐵 ) ) )  | 
						
						
							| 32 | 
							
								31
							 | 
							rexlimdv | 
							⊢ ( 𝑦  ∈  ∪  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 )  →  ( ∃ 𝑤  ∈  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 ) 𝑦  ∈  𝑤  →  ∃ 𝑥  ∈  𝐴 𝑦  ∈  𝐵 ) )  | 
						
						
							| 33 | 
							
								11 32
							 | 
							mpd | 
							⊢ ( 𝑦  ∈  ∪  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 )  →  ∃ 𝑥  ∈  𝐴 𝑦  ∈  𝐵 )  | 
						
						
							| 34 | 
							
								9 33
							 | 
							syl | 
							⊢ ( 𝑦  ∈  ( ∪  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∩  𝐶 )  →  ∃ 𝑥  ∈  𝐴 𝑦  ∈  𝐵 )  | 
						
						
							| 35 | 
							
								34
							 | 
							adantl | 
							⊢ ( ( 𝜑  ∧  𝑦  ∈  ( ∪  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∩  𝐶 ) )  →  ∃ 𝑥  ∈  𝐴 𝑦  ∈  𝐵 )  | 
						
						
							| 36 | 
							
								
							 | 
							nfv | 
							⊢ Ⅎ 𝑥 𝜑  | 
						
						
							| 37 | 
							
								18
							 | 
							nfuni | 
							⊢ Ⅎ 𝑥 ∪  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 )  | 
						
						
							| 38 | 
							
								
							 | 
							nfcv | 
							⊢ Ⅎ 𝑥 𝐶  | 
						
						
							| 39 | 
							
								37 38
							 | 
							nfin | 
							⊢ Ⅎ 𝑥 ( ∪  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∩  𝐶 )  | 
						
						
							| 40 | 
							
								39
							 | 
							nfcri | 
							⊢ Ⅎ 𝑥 𝑦  ∈  ( ∪  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∩  𝐶 )  | 
						
						
							| 41 | 
							
								36 40
							 | 
							nfan | 
							⊢ Ⅎ 𝑥 ( 𝜑  ∧  𝑦  ∈  ( ∪  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∩  𝐶 ) )  | 
						
						
							| 42 | 
							
								
							 | 
							nfre1 | 
							⊢ Ⅎ 𝑥 ∃ 𝑥  ∈  𝐴 𝑦  ∈  ( 𝐵  ∩  𝐶 )  | 
						
						
							| 43 | 
							
								
							 | 
							elinel2 | 
							⊢ ( 𝑦  ∈  ( ∪  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∩  𝐶 )  →  𝑦  ∈  𝐶 )  | 
						
						
							| 44 | 
							
								
							 | 
							simp2 | 
							⊢ ( ( 𝑦  ∈  𝐶  ∧  𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵 )  →  𝑥  ∈  𝐴 )  | 
						
						
							| 45 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝑦  ∈  𝐶  ∧  𝑦  ∈  𝐵 )  →  𝑦  ∈  𝐵 )  | 
						
						
							| 46 | 
							
								
							 | 
							simpl | 
							⊢ ( ( 𝑦  ∈  𝐶  ∧  𝑦  ∈  𝐵 )  →  𝑦  ∈  𝐶 )  | 
						
						
							| 47 | 
							
								45 46
							 | 
							elind | 
							⊢ ( ( 𝑦  ∈  𝐶  ∧  𝑦  ∈  𝐵 )  →  𝑦  ∈  ( 𝐵  ∩  𝐶 ) )  | 
						
						
							| 48 | 
							
								
							 | 
							rspe | 
							⊢ ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  ( 𝐵  ∩  𝐶 ) )  →  ∃ 𝑥  ∈  𝐴 𝑦  ∈  ( 𝐵  ∩  𝐶 ) )  | 
						
						
							| 49 | 
							
								44 47 48
							 | 
							3imp3i2an | 
							⊢ ( ( 𝑦  ∈  𝐶  ∧  𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵 )  →  ∃ 𝑥  ∈  𝐴 𝑦  ∈  ( 𝐵  ∩  𝐶 ) )  | 
						
						
							| 50 | 
							
								49
							 | 
							3exp | 
							⊢ ( 𝑦  ∈  𝐶  →  ( 𝑥  ∈  𝐴  →  ( 𝑦  ∈  𝐵  →  ∃ 𝑥  ∈  𝐴 𝑦  ∈  ( 𝐵  ∩  𝐶 ) ) ) )  | 
						
						
							| 51 | 
							
								43 50
							 | 
							syl | 
							⊢ ( 𝑦  ∈  ( ∪  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∩  𝐶 )  →  ( 𝑥  ∈  𝐴  →  ( 𝑦  ∈  𝐵  →  ∃ 𝑥  ∈  𝐴 𝑦  ∈  ( 𝐵  ∩  𝐶 ) ) ) )  | 
						
						
							| 52 | 
							
								51
							 | 
							adantl | 
							⊢ ( ( 𝜑  ∧  𝑦  ∈  ( ∪  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∩  𝐶 ) )  →  ( 𝑥  ∈  𝐴  →  ( 𝑦  ∈  𝐵  →  ∃ 𝑥  ∈  𝐴 𝑦  ∈  ( 𝐵  ∩  𝐶 ) ) ) )  | 
						
						
							| 53 | 
							
								41 42 52
							 | 
							rexlimd | 
							⊢ ( ( 𝜑  ∧  𝑦  ∈  ( ∪  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∩  𝐶 ) )  →  ( ∃ 𝑥  ∈  𝐴 𝑦  ∈  𝐵  →  ∃ 𝑥  ∈  𝐴 𝑦  ∈  ( 𝐵  ∩  𝐶 ) ) )  | 
						
						
							| 54 | 
							
								35 53
							 | 
							mpd | 
							⊢ ( ( 𝜑  ∧  𝑦  ∈  ( ∪  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∩  𝐶 ) )  →  ∃ 𝑥  ∈  𝐴 𝑦  ∈  ( 𝐵  ∩  𝐶 ) )  | 
						
						
							| 55 | 
							
								
							 | 
							disjors | 
							⊢ ( Disj  𝑥  ∈  𝐴 𝐵  ↔  ∀ 𝑧  ∈  𝐴 ∀ 𝑤  ∈  𝐴 ( 𝑧  =  𝑤  ∨  ( ⦋ 𝑧  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑤  /  𝑥 ⦌ 𝐵 )  =  ∅ ) )  | 
						
						
							| 56 | 
							
								2 55
							 | 
							sylib | 
							⊢ ( 𝜑  →  ∀ 𝑧  ∈  𝐴 ∀ 𝑤  ∈  𝐴 ( 𝑧  =  𝑤  ∨  ( ⦋ 𝑧  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑤  /  𝑥 ⦌ 𝐵 )  =  ∅ ) )  | 
						
						
							| 57 | 
							
								
							 | 
							nfv | 
							⊢ Ⅎ 𝑧 ∀ 𝑤  ∈  𝐴 ( 𝑥  =  𝑤  ∨  ( 𝐵  ∩  ⦋ 𝑤  /  𝑥 ⦌ 𝐵 )  =  ∅ )  | 
						
						
							| 58 | 
							
								
							 | 
							nfcv | 
							⊢ Ⅎ 𝑥 𝐴  | 
						
						
							| 59 | 
							
								
							 | 
							nfv | 
							⊢ Ⅎ 𝑥 𝑧  =  𝑤  | 
						
						
							| 60 | 
							
								
							 | 
							nfcsb1v | 
							⊢ Ⅎ 𝑥 ⦋ 𝑧  /  𝑥 ⦌ 𝐵  | 
						
						
							| 61 | 
							
								
							 | 
							nfcv | 
							⊢ Ⅎ 𝑥 𝑤  | 
						
						
							| 62 | 
							
								61
							 | 
							nfcsb1 | 
							⊢ Ⅎ 𝑥 ⦋ 𝑤  /  𝑥 ⦌ 𝐵  | 
						
						
							| 63 | 
							
								60 62
							 | 
							nfin | 
							⊢ Ⅎ 𝑥 ( ⦋ 𝑧  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑤  /  𝑥 ⦌ 𝐵 )  | 
						
						
							| 64 | 
							
								63
							 | 
							nfeq1 | 
							⊢ Ⅎ 𝑥 ( ⦋ 𝑧  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑤  /  𝑥 ⦌ 𝐵 )  =  ∅  | 
						
						
							| 65 | 
							
								59 64
							 | 
							nfor | 
							⊢ Ⅎ 𝑥 ( 𝑧  =  𝑤  ∨  ( ⦋ 𝑧  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑤  /  𝑥 ⦌ 𝐵 )  =  ∅ )  | 
						
						
							| 66 | 
							
								58 65
							 | 
							nfralw | 
							⊢ Ⅎ 𝑥 ∀ 𝑤  ∈  𝐴 ( 𝑧  =  𝑤  ∨  ( ⦋ 𝑧  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑤  /  𝑥 ⦌ 𝐵 )  =  ∅ )  | 
						
						
							| 67 | 
							
								
							 | 
							equequ1 | 
							⊢ ( 𝑥  =  𝑧  →  ( 𝑥  =  𝑤  ↔  𝑧  =  𝑤 ) )  | 
						
						
							| 68 | 
							
								
							 | 
							csbeq1a | 
							⊢ ( 𝑥  =  𝑧  →  𝐵  =  ⦋ 𝑧  /  𝑥 ⦌ 𝐵 )  | 
						
						
							| 69 | 
							
								68
							 | 
							ineq1d | 
							⊢ ( 𝑥  =  𝑧  →  ( 𝐵  ∩  ⦋ 𝑤  /  𝑥 ⦌ 𝐵 )  =  ( ⦋ 𝑧  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑤  /  𝑥 ⦌ 𝐵 ) )  | 
						
						
							| 70 | 
							
								69
							 | 
							eqeq1d | 
							⊢ ( 𝑥  =  𝑧  →  ( ( 𝐵  ∩  ⦋ 𝑤  /  𝑥 ⦌ 𝐵 )  =  ∅  ↔  ( ⦋ 𝑧  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑤  /  𝑥 ⦌ 𝐵 )  =  ∅ ) )  | 
						
						
							| 71 | 
							
								67 70
							 | 
							orbi12d | 
							⊢ ( 𝑥  =  𝑧  →  ( ( 𝑥  =  𝑤  ∨  ( 𝐵  ∩  ⦋ 𝑤  /  𝑥 ⦌ 𝐵 )  =  ∅ )  ↔  ( 𝑧  =  𝑤  ∨  ( ⦋ 𝑧  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑤  /  𝑥 ⦌ 𝐵 )  =  ∅ ) ) )  | 
						
						
							| 72 | 
							
								71
							 | 
							ralbidv | 
							⊢ ( 𝑥  =  𝑧  →  ( ∀ 𝑤  ∈  𝐴 ( 𝑥  =  𝑤  ∨  ( 𝐵  ∩  ⦋ 𝑤  /  𝑥 ⦌ 𝐵 )  =  ∅ )  ↔  ∀ 𝑤  ∈  𝐴 ( 𝑧  =  𝑤  ∨  ( ⦋ 𝑧  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑤  /  𝑥 ⦌ 𝐵 )  =  ∅ ) ) )  | 
						
						
							| 73 | 
							
								57 66 72
							 | 
							cbvralw | 
							⊢ ( ∀ 𝑥  ∈  𝐴 ∀ 𝑤  ∈  𝐴 ( 𝑥  =  𝑤  ∨  ( 𝐵  ∩  ⦋ 𝑤  /  𝑥 ⦌ 𝐵 )  =  ∅ )  ↔  ∀ 𝑧  ∈  𝐴 ∀ 𝑤  ∈  𝐴 ( 𝑧  =  𝑤  ∨  ( ⦋ 𝑧  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑤  /  𝑥 ⦌ 𝐵 )  =  ∅ ) )  | 
						
						
							| 74 | 
							
								56 73
							 | 
							sylibr | 
							⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝐴 ∀ 𝑤  ∈  𝐴 ( 𝑥  =  𝑤  ∨  ( 𝐵  ∩  ⦋ 𝑤  /  𝑥 ⦌ 𝐵 )  =  ∅ ) )  | 
						
						
							| 75 | 
							
								74
							 | 
							r19.21bi | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ∀ 𝑤  ∈  𝐴 ( 𝑥  =  𝑤  ∨  ( 𝐵  ∩  ⦋ 𝑤  /  𝑥 ⦌ 𝐵 )  =  ∅ ) )  | 
						
						
							| 76 | 
							
								
							 | 
							rspa | 
							⊢ ( ( ∀ 𝑤  ∈  𝐴 ( 𝑥  =  𝑤  ∨  ( 𝐵  ∩  ⦋ 𝑤  /  𝑥 ⦌ 𝐵 )  =  ∅ )  ∧  𝑤  ∈  𝐴 )  →  ( 𝑥  =  𝑤  ∨  ( 𝐵  ∩  ⦋ 𝑤  /  𝑥 ⦌ 𝐵 )  =  ∅ ) )  | 
						
						
							| 77 | 
							
								76
							 | 
							orcomd | 
							⊢ ( ( ∀ 𝑤  ∈  𝐴 ( 𝑥  =  𝑤  ∨  ( 𝐵  ∩  ⦋ 𝑤  /  𝑥 ⦌ 𝐵 )  =  ∅ )  ∧  𝑤  ∈  𝐴 )  →  ( ( 𝐵  ∩  ⦋ 𝑤  /  𝑥 ⦌ 𝐵 )  =  ∅  ∨  𝑥  =  𝑤 ) )  | 
						
						
							| 78 | 
							
								75 77
							 | 
							sylan | 
							⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  ∧  𝑤  ∈  𝐴 )  →  ( ( 𝐵  ∩  ⦋ 𝑤  /  𝑥 ⦌ 𝐵 )  =  ∅  ∨  𝑥  =  𝑤 ) )  | 
						
						
							| 79 | 
							
								
							 | 
							elinel1 | 
							⊢ ( 𝑦  ∈  ( 𝐵  ∩  𝐶 )  →  𝑦  ∈  𝐵 )  | 
						
						
							| 80 | 
							
								
							 | 
							sbsbc | 
							⊢ ( [ 𝑤  /  𝑥 ] 𝑦  ∈  ( 𝐵  ∩  𝐶 )  ↔  [ 𝑤  /  𝑥 ] 𝑦  ∈  ( 𝐵  ∩  𝐶 ) )  | 
						
						
							| 81 | 
							
								
							 | 
							sbcel2 | 
							⊢ ( [ 𝑤  /  𝑥 ] 𝑦  ∈  ( 𝐵  ∩  𝐶 )  ↔  𝑦  ∈  ⦋ 𝑤  /  𝑥 ⦌ ( 𝐵  ∩  𝐶 ) )  | 
						
						
							| 82 | 
							
								
							 | 
							csbin | 
							⊢ ⦋ 𝑤  /  𝑥 ⦌ ( 𝐵  ∩  𝐶 )  =  ( ⦋ 𝑤  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑤  /  𝑥 ⦌ 𝐶 )  | 
						
						
							| 83 | 
							
								82
							 | 
							eleq2i | 
							⊢ ( 𝑦  ∈  ⦋ 𝑤  /  𝑥 ⦌ ( 𝐵  ∩  𝐶 )  ↔  𝑦  ∈  ( ⦋ 𝑤  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑤  /  𝑥 ⦌ 𝐶 ) )  | 
						
						
							| 84 | 
							
								80 81 83
							 | 
							3bitri | 
							⊢ ( [ 𝑤  /  𝑥 ] 𝑦  ∈  ( 𝐵  ∩  𝐶 )  ↔  𝑦  ∈  ( ⦋ 𝑤  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑤  /  𝑥 ⦌ 𝐶 ) )  | 
						
						
							| 85 | 
							
								
							 | 
							elinel1 | 
							⊢ ( 𝑦  ∈  ( ⦋ 𝑤  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑤  /  𝑥 ⦌ 𝐶 )  →  𝑦  ∈  ⦋ 𝑤  /  𝑥 ⦌ 𝐵 )  | 
						
						
							| 86 | 
							
								84 85
							 | 
							sylbi | 
							⊢ ( [ 𝑤  /  𝑥 ] 𝑦  ∈  ( 𝐵  ∩  𝐶 )  →  𝑦  ∈  ⦋ 𝑤  /  𝑥 ⦌ 𝐵 )  | 
						
						
							| 87 | 
							
								
							 | 
							inelcm | 
							⊢ ( ( 𝑦  ∈  𝐵  ∧  𝑦  ∈  ⦋ 𝑤  /  𝑥 ⦌ 𝐵 )  →  ( 𝐵  ∩  ⦋ 𝑤  /  𝑥 ⦌ 𝐵 )  ≠  ∅ )  | 
						
						
							| 88 | 
							
								87
							 | 
							neneqd | 
							⊢ ( ( 𝑦  ∈  𝐵  ∧  𝑦  ∈  ⦋ 𝑤  /  𝑥 ⦌ 𝐵 )  →  ¬  ( 𝐵  ∩  ⦋ 𝑤  /  𝑥 ⦌ 𝐵 )  =  ∅ )  | 
						
						
							| 89 | 
							
								79 86 88
							 | 
							syl2an | 
							⊢ ( ( 𝑦  ∈  ( 𝐵  ∩  𝐶 )  ∧  [ 𝑤  /  𝑥 ] 𝑦  ∈  ( 𝐵  ∩  𝐶 ) )  →  ¬  ( 𝐵  ∩  ⦋ 𝑤  /  𝑥 ⦌ 𝐵 )  =  ∅ )  | 
						
						
							| 90 | 
							
								
							 | 
							pm2.53 | 
							⊢ ( ( ( 𝐵  ∩  ⦋ 𝑤  /  𝑥 ⦌ 𝐵 )  =  ∅  ∨  𝑥  =  𝑤 )  →  ( ¬  ( 𝐵  ∩  ⦋ 𝑤  /  𝑥 ⦌ 𝐵 )  =  ∅  →  𝑥  =  𝑤 ) )  | 
						
						
							| 91 | 
							
								78 89 90
							 | 
							syl2im | 
							⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  ∧  𝑤  ∈  𝐴 )  →  ( ( 𝑦  ∈  ( 𝐵  ∩  𝐶 )  ∧  [ 𝑤  /  𝑥 ] 𝑦  ∈  ( 𝐵  ∩  𝐶 ) )  →  𝑥  =  𝑤 ) )  | 
						
						
							| 92 | 
							
								91
							 | 
							ralrimiva | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ∀ 𝑤  ∈  𝐴 ( ( 𝑦  ∈  ( 𝐵  ∩  𝐶 )  ∧  [ 𝑤  /  𝑥 ] 𝑦  ∈  ( 𝐵  ∩  𝐶 ) )  →  𝑥  =  𝑤 ) )  | 
						
						
							| 93 | 
							
								92
							 | 
							ralrimiva | 
							⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝐴 ∀ 𝑤  ∈  𝐴 ( ( 𝑦  ∈  ( 𝐵  ∩  𝐶 )  ∧  [ 𝑤  /  𝑥 ] 𝑦  ∈  ( 𝐵  ∩  𝐶 ) )  →  𝑥  =  𝑤 ) )  | 
						
						
							| 94 | 
							
								93
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑦  ∈  ( ∪  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∩  𝐶 ) )  →  ∀ 𝑥  ∈  𝐴 ∀ 𝑤  ∈  𝐴 ( ( 𝑦  ∈  ( 𝐵  ∩  𝐶 )  ∧  [ 𝑤  /  𝑥 ] 𝑦  ∈  ( 𝐵  ∩  𝐶 ) )  →  𝑥  =  𝑤 ) )  | 
						
						
							| 95 | 
							
								
							 | 
							reu2 | 
							⊢ ( ∃! 𝑥  ∈  𝐴 𝑦  ∈  ( 𝐵  ∩  𝐶 )  ↔  ( ∃ 𝑥  ∈  𝐴 𝑦  ∈  ( 𝐵  ∩  𝐶 )  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑤  ∈  𝐴 ( ( 𝑦  ∈  ( 𝐵  ∩  𝐶 )  ∧  [ 𝑤  /  𝑥 ] 𝑦  ∈  ( 𝐵  ∩  𝐶 ) )  →  𝑥  =  𝑤 ) ) )  | 
						
						
							| 96 | 
							
								54 94 95
							 | 
							sylanbrc | 
							⊢ ( ( 𝜑  ∧  𝑦  ∈  ( ∪  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∩  𝐶 ) )  →  ∃! 𝑥  ∈  𝐴 𝑦  ∈  ( 𝐵  ∩  𝐶 ) )  | 
						
						
							| 97 | 
							
								
							 | 
							riotacl2 | 
							⊢ ( ∃! 𝑥  ∈  𝐴 𝑦  ∈  ( 𝐵  ∩  𝐶 )  →  ( ℩ 𝑥  ∈  𝐴 𝑦  ∈  ( 𝐵  ∩  𝐶 ) )  ∈  { 𝑥  ∈  𝐴  ∣  𝑦  ∈  ( 𝐵  ∩  𝐶 ) } )  | 
						
						
							| 98 | 
							
								
							 | 
							nfriota1 | 
							⊢ Ⅎ 𝑥 ( ℩ 𝑥  ∈  𝐴 𝑦  ∈  ( 𝐵  ∩  𝐶 ) )  | 
						
						
							| 99 | 
							
								98
							 | 
							nfcsb1 | 
							⊢ Ⅎ 𝑥 ⦋ ( ℩ 𝑥  ∈  𝐴 𝑦  ∈  ( 𝐵  ∩  𝐶 ) )  /  𝑥 ⦌ 𝐵  | 
						
						
							| 100 | 
							
								99 38
							 | 
							nfin | 
							⊢ Ⅎ 𝑥 ( ⦋ ( ℩ 𝑥  ∈  𝐴 𝑦  ∈  ( 𝐵  ∩  𝐶 ) )  /  𝑥 ⦌ 𝐵  ∩  𝐶 )  | 
						
						
							| 101 | 
							
								100
							 | 
							nfcri | 
							⊢ Ⅎ 𝑥 𝑦  ∈  ( ⦋ ( ℩ 𝑥  ∈  𝐴 𝑦  ∈  ( 𝐵  ∩  𝐶 ) )  /  𝑥 ⦌ 𝐵  ∩  𝐶 )  | 
						
						
							| 102 | 
							
								
							 | 
							csbeq1a | 
							⊢ ( 𝑥  =  ( ℩ 𝑥  ∈  𝐴 𝑦  ∈  ( 𝐵  ∩  𝐶 ) )  →  𝐵  =  ⦋ ( ℩ 𝑥  ∈  𝐴 𝑦  ∈  ( 𝐵  ∩  𝐶 ) )  /  𝑥 ⦌ 𝐵 )  | 
						
						
							| 103 | 
							
								102
							 | 
							ineq1d | 
							⊢ ( 𝑥  =  ( ℩ 𝑥  ∈  𝐴 𝑦  ∈  ( 𝐵  ∩  𝐶 ) )  →  ( 𝐵  ∩  𝐶 )  =  ( ⦋ ( ℩ 𝑥  ∈  𝐴 𝑦  ∈  ( 𝐵  ∩  𝐶 ) )  /  𝑥 ⦌ 𝐵  ∩  𝐶 ) )  | 
						
						
							| 104 | 
							
								103
							 | 
							eleq2d | 
							⊢ ( 𝑥  =  ( ℩ 𝑥  ∈  𝐴 𝑦  ∈  ( 𝐵  ∩  𝐶 ) )  →  ( 𝑦  ∈  ( 𝐵  ∩  𝐶 )  ↔  𝑦  ∈  ( ⦋ ( ℩ 𝑥  ∈  𝐴 𝑦  ∈  ( 𝐵  ∩  𝐶 ) )  /  𝑥 ⦌ 𝐵  ∩  𝐶 ) ) )  | 
						
						
							| 105 | 
							
								98 58 101 104
							 | 
							elrabf | 
							⊢ ( ( ℩ 𝑥  ∈  𝐴 𝑦  ∈  ( 𝐵  ∩  𝐶 ) )  ∈  { 𝑥  ∈  𝐴  ∣  𝑦  ∈  ( 𝐵  ∩  𝐶 ) }  ↔  ( ( ℩ 𝑥  ∈  𝐴 𝑦  ∈  ( 𝐵  ∩  𝐶 ) )  ∈  𝐴  ∧  𝑦  ∈  ( ⦋ ( ℩ 𝑥  ∈  𝐴 𝑦  ∈  ( 𝐵  ∩  𝐶 ) )  /  𝑥 ⦌ 𝐵  ∩  𝐶 ) ) )  | 
						
						
							| 106 | 
							
								105
							 | 
							simplbi | 
							⊢ ( ( ℩ 𝑥  ∈  𝐴 𝑦  ∈  ( 𝐵  ∩  𝐶 ) )  ∈  { 𝑥  ∈  𝐴  ∣  𝑦  ∈  ( 𝐵  ∩  𝐶 ) }  →  ( ℩ 𝑥  ∈  𝐴 𝑦  ∈  ( 𝐵  ∩  𝐶 ) )  ∈  𝐴 )  | 
						
						
							| 107 | 
							
								105
							 | 
							simprbi | 
							⊢ ( ( ℩ 𝑥  ∈  𝐴 𝑦  ∈  ( 𝐵  ∩  𝐶 ) )  ∈  { 𝑥  ∈  𝐴  ∣  𝑦  ∈  ( 𝐵  ∩  𝐶 ) }  →  𝑦  ∈  ( ⦋ ( ℩ 𝑥  ∈  𝐴 𝑦  ∈  ( 𝐵  ∩  𝐶 ) )  /  𝑥 ⦌ 𝐵  ∩  𝐶 ) )  | 
						
						
							| 108 | 
							
								107
							 | 
							ne0d | 
							⊢ ( ( ℩ 𝑥  ∈  𝐴 𝑦  ∈  ( 𝐵  ∩  𝐶 ) )  ∈  { 𝑥  ∈  𝐴  ∣  𝑦  ∈  ( 𝐵  ∩  𝐶 ) }  →  ( ⦋ ( ℩ 𝑥  ∈  𝐴 𝑦  ∈  ( 𝐵  ∩  𝐶 ) )  /  𝑥 ⦌ 𝐵  ∩  𝐶 )  ≠  ∅ )  | 
						
						
							| 109 | 
							
								
							 | 
							nfcv | 
							⊢ Ⅎ 𝑥 ∅  | 
						
						
							| 110 | 
							
								100 109
							 | 
							nfne | 
							⊢ Ⅎ 𝑥 ( ⦋ ( ℩ 𝑥  ∈  𝐴 𝑦  ∈  ( 𝐵  ∩  𝐶 ) )  /  𝑥 ⦌ 𝐵  ∩  𝐶 )  ≠  ∅  | 
						
						
							| 111 | 
							
								103
							 | 
							neeq1d | 
							⊢ ( 𝑥  =  ( ℩ 𝑥  ∈  𝐴 𝑦  ∈  ( 𝐵  ∩  𝐶 ) )  →  ( ( 𝐵  ∩  𝐶 )  ≠  ∅  ↔  ( ⦋ ( ℩ 𝑥  ∈  𝐴 𝑦  ∈  ( 𝐵  ∩  𝐶 ) )  /  𝑥 ⦌ 𝐵  ∩  𝐶 )  ≠  ∅ ) )  | 
						
						
							| 112 | 
							
								98 58 110 111
							 | 
							elrabf | 
							⊢ ( ( ℩ 𝑥  ∈  𝐴 𝑦  ∈  ( 𝐵  ∩  𝐶 ) )  ∈  { 𝑥  ∈  𝐴  ∣  ( 𝐵  ∩  𝐶 )  ≠  ∅ }  ↔  ( ( ℩ 𝑥  ∈  𝐴 𝑦  ∈  ( 𝐵  ∩  𝐶 ) )  ∈  𝐴  ∧  ( ⦋ ( ℩ 𝑥  ∈  𝐴 𝑦  ∈  ( 𝐵  ∩  𝐶 ) )  /  𝑥 ⦌ 𝐵  ∩  𝐶 )  ≠  ∅ ) )  | 
						
						
							| 113 | 
							
								106 108 112
							 | 
							sylanbrc | 
							⊢ ( ( ℩ 𝑥  ∈  𝐴 𝑦  ∈  ( 𝐵  ∩  𝐶 ) )  ∈  { 𝑥  ∈  𝐴  ∣  𝑦  ∈  ( 𝐵  ∩  𝐶 ) }  →  ( ℩ 𝑥  ∈  𝐴 𝑦  ∈  ( 𝐵  ∩  𝐶 ) )  ∈  { 𝑥  ∈  𝐴  ∣  ( 𝐵  ∩  𝐶 )  ≠  ∅ } )  | 
						
						
							| 114 | 
							
								96 97 113
							 | 
							3syl | 
							⊢ ( ( 𝜑  ∧  𝑦  ∈  ( ∪  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∩  𝐶 ) )  →  ( ℩ 𝑥  ∈  𝐴 𝑦  ∈  ( 𝐵  ∩  𝐶 ) )  ∈  { 𝑥  ∈  𝐴  ∣  ( 𝐵  ∩  𝐶 )  ≠  ∅ } )  | 
						
						
							| 115 | 
							
								114
							 | 
							ralrimiva | 
							⊢ ( 𝜑  →  ∀ 𝑦  ∈  ( ∪  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∩  𝐶 ) ( ℩ 𝑥  ∈  𝐴 𝑦  ∈  ( 𝐵  ∩  𝐶 ) )  ∈  { 𝑥  ∈  𝐴  ∣  ( 𝐵  ∩  𝐶 )  ≠  ∅ } )  | 
						
						
							| 116 | 
							
								62 38
							 | 
							nfin | 
							⊢ Ⅎ 𝑥 ( ⦋ 𝑤  /  𝑥 ⦌ 𝐵  ∩  𝐶 )  | 
						
						
							| 117 | 
							
								116 109
							 | 
							nfne | 
							⊢ Ⅎ 𝑥 ( ⦋ 𝑤  /  𝑥 ⦌ 𝐵  ∩  𝐶 )  ≠  ∅  | 
						
						
							| 118 | 
							
								
							 | 
							csbeq1a | 
							⊢ ( 𝑥  =  𝑤  →  𝐵  =  ⦋ 𝑤  /  𝑥 ⦌ 𝐵 )  | 
						
						
							| 119 | 
							
								118
							 | 
							ineq1d | 
							⊢ ( 𝑥  =  𝑤  →  ( 𝐵  ∩  𝐶 )  =  ( ⦋ 𝑤  /  𝑥 ⦌ 𝐵  ∩  𝐶 ) )  | 
						
						
							| 120 | 
							
								119
							 | 
							neeq1d | 
							⊢ ( 𝑥  =  𝑤  →  ( ( 𝐵  ∩  𝐶 )  ≠  ∅  ↔  ( ⦋ 𝑤  /  𝑥 ⦌ 𝐵  ∩  𝐶 )  ≠  ∅ ) )  | 
						
						
							| 121 | 
							
								61 58 117 120
							 | 
							elrabf | 
							⊢ ( 𝑤  ∈  { 𝑥  ∈  𝐴  ∣  ( 𝐵  ∩  𝐶 )  ≠  ∅ }  ↔  ( 𝑤  ∈  𝐴  ∧  ( ⦋ 𝑤  /  𝑥 ⦌ 𝐵  ∩  𝐶 )  ≠  ∅ ) )  | 
						
						
							| 122 | 
							
								121
							 | 
							simprbi | 
							⊢ ( 𝑤  ∈  { 𝑥  ∈  𝐴  ∣  ( 𝐵  ∩  𝐶 )  ≠  ∅ }  →  ( ⦋ 𝑤  /  𝑥 ⦌ 𝐵  ∩  𝐶 )  ≠  ∅ )  | 
						
						
							| 123 | 
							
								
							 | 
							n0 | 
							⊢ ( ( ⦋ 𝑤  /  𝑥 ⦌ 𝐵  ∩  𝐶 )  ≠  ∅  ↔  ∃ 𝑦 𝑦  ∈  ( ⦋ 𝑤  /  𝑥 ⦌ 𝐵  ∩  𝐶 ) )  | 
						
						
							| 124 | 
							
								122 123
							 | 
							sylib | 
							⊢ ( 𝑤  ∈  { 𝑥  ∈  𝐴  ∣  ( 𝐵  ∩  𝐶 )  ≠  ∅ }  →  ∃ 𝑦 𝑦  ∈  ( ⦋ 𝑤  /  𝑥 ⦌ 𝐵  ∩  𝐶 ) )  | 
						
						
							| 125 | 
							
								124
							 | 
							adantl | 
							⊢ ( ( 𝜑  ∧  𝑤  ∈  { 𝑥  ∈  𝐴  ∣  ( 𝐵  ∩  𝐶 )  ≠  ∅ } )  →  ∃ 𝑦 𝑦  ∈  ( ⦋ 𝑤  /  𝑥 ⦌ 𝐵  ∩  𝐶 ) )  | 
						
						
							| 126 | 
							
								121
							 | 
							simplbi | 
							⊢ ( 𝑤  ∈  { 𝑥  ∈  𝐴  ∣  ( 𝐵  ∩  𝐶 )  ≠  ∅ }  →  𝑤  ∈  𝐴 )  | 
						
						
							| 127 | 
							
								
							 | 
							elinel1 | 
							⊢ ( 𝑦  ∈  ( ⦋ 𝑤  /  𝑥 ⦌ 𝐵  ∩  𝐶 )  →  𝑦  ∈  ⦋ 𝑤  /  𝑥 ⦌ 𝐵 )  | 
						
						
							| 128 | 
							
								127
							 | 
							adantl | 
							⊢ ( ( ( 𝜑  ∧  𝑤  ∈  𝐴 )  ∧  𝑦  ∈  ( ⦋ 𝑤  /  𝑥 ⦌ 𝐵  ∩  𝐶 ) )  →  𝑦  ∈  ⦋ 𝑤  /  𝑥 ⦌ 𝐵 )  | 
						
						
							| 129 | 
							
								
							 | 
							simplr | 
							⊢ ( ( ( 𝜑  ∧  𝑤  ∈  𝐴 )  ∧  𝑦  ∈  ( ⦋ 𝑤  /  𝑥 ⦌ 𝐵  ∩  𝐶 ) )  →  𝑤  ∈  𝐴 )  | 
						
						
							| 130 | 
							
								
							 | 
							nfv | 
							⊢ Ⅎ 𝑥 ( 𝜑  ∧  𝑤  ∈  𝐴 )  | 
						
						
							| 131 | 
							
								62
							 | 
							nfel1 | 
							⊢ Ⅎ 𝑥 ⦋ 𝑤  /  𝑥 ⦌ 𝐵  ∈  𝑉  | 
						
						
							| 132 | 
							
								130 131
							 | 
							nfim | 
							⊢ Ⅎ 𝑥 ( ( 𝜑  ∧  𝑤  ∈  𝐴 )  →  ⦋ 𝑤  /  𝑥 ⦌ 𝐵  ∈  𝑉 )  | 
						
						
							| 133 | 
							
								
							 | 
							eleq1w | 
							⊢ ( 𝑥  =  𝑤  →  ( 𝑥  ∈  𝐴  ↔  𝑤  ∈  𝐴 ) )  | 
						
						
							| 134 | 
							
								133
							 | 
							anbi2d | 
							⊢ ( 𝑥  =  𝑤  →  ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  ↔  ( 𝜑  ∧  𝑤  ∈  𝐴 ) ) )  | 
						
						
							| 135 | 
							
								118
							 | 
							eleq1d | 
							⊢ ( 𝑥  =  𝑤  →  ( 𝐵  ∈  𝑉  ↔  ⦋ 𝑤  /  𝑥 ⦌ 𝐵  ∈  𝑉 ) )  | 
						
						
							| 136 | 
							
								134 135
							 | 
							imbi12d | 
							⊢ ( 𝑥  =  𝑤  →  ( ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐵  ∈  𝑉 )  ↔  ( ( 𝜑  ∧  𝑤  ∈  𝐴 )  →  ⦋ 𝑤  /  𝑥 ⦌ 𝐵  ∈  𝑉 ) ) )  | 
						
						
							| 137 | 
							
								132 136 1
							 | 
							chvarfv | 
							⊢ ( ( 𝜑  ∧  𝑤  ∈  𝐴 )  →  ⦋ 𝑤  /  𝑥 ⦌ 𝐵  ∈  𝑉 )  | 
						
						
							| 138 | 
							
								137
							 | 
							adantr | 
							⊢ ( ( ( 𝜑  ∧  𝑤  ∈  𝐴 )  ∧  𝑦  ∈  ( ⦋ 𝑤  /  𝑥 ⦌ 𝐵  ∩  𝐶 ) )  →  ⦋ 𝑤  /  𝑥 ⦌ 𝐵  ∈  𝑉 )  | 
						
						
							| 139 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝑤  ∈  𝐴  ↦  ⦋ 𝑤  /  𝑥 ⦌ 𝐵 )  =  ( 𝑤  ∈  𝐴  ↦  ⦋ 𝑤  /  𝑥 ⦌ 𝐵 )  | 
						
						
							| 140 | 
							
								139
							 | 
							elrnmpt1 | 
							⊢ ( ( 𝑤  ∈  𝐴  ∧  ⦋ 𝑤  /  𝑥 ⦌ 𝐵  ∈  𝑉 )  →  ⦋ 𝑤  /  𝑥 ⦌ 𝐵  ∈  ran  ( 𝑤  ∈  𝐴  ↦  ⦋ 𝑤  /  𝑥 ⦌ 𝐵 ) )  | 
						
						
							| 141 | 
							
								129 138 140
							 | 
							syl2anc | 
							⊢ ( ( ( 𝜑  ∧  𝑤  ∈  𝐴 )  ∧  𝑦  ∈  ( ⦋ 𝑤  /  𝑥 ⦌ 𝐵  ∩  𝐶 ) )  →  ⦋ 𝑤  /  𝑥 ⦌ 𝐵  ∈  ran  ( 𝑤  ∈  𝐴  ↦  ⦋ 𝑤  /  𝑥 ⦌ 𝐵 ) )  | 
						
						
							| 142 | 
							
								
							 | 
							nfcv | 
							⊢ Ⅎ 𝑤 𝐵  | 
						
						
							| 143 | 
							
								118
							 | 
							equcoms | 
							⊢ ( 𝑤  =  𝑥  →  𝐵  =  ⦋ 𝑤  /  𝑥 ⦌ 𝐵 )  | 
						
						
							| 144 | 
							
								143
							 | 
							eqcomd | 
							⊢ ( 𝑤  =  𝑥  →  ⦋ 𝑤  /  𝑥 ⦌ 𝐵  =  𝐵 )  | 
						
						
							| 145 | 
							
								62 142 144
							 | 
							cbvmpt | 
							⊢ ( 𝑤  ∈  𝐴  ↦  ⦋ 𝑤  /  𝑥 ⦌ 𝐵 )  =  ( 𝑥  ∈  𝐴  ↦  𝐵 )  | 
						
						
							| 146 | 
							
								145
							 | 
							rneqi | 
							⊢ ran  ( 𝑤  ∈  𝐴  ↦  ⦋ 𝑤  /  𝑥 ⦌ 𝐵 )  =  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 )  | 
						
						
							| 147 | 
							
								141 146
							 | 
							eleqtrdi | 
							⊢ ( ( ( 𝜑  ∧  𝑤  ∈  𝐴 )  ∧  𝑦  ∈  ( ⦋ 𝑤  /  𝑥 ⦌ 𝐵  ∩  𝐶 ) )  →  ⦋ 𝑤  /  𝑥 ⦌ 𝐵  ∈  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  | 
						
						
							| 148 | 
							
								
							 | 
							elunii | 
							⊢ ( ( 𝑦  ∈  ⦋ 𝑤  /  𝑥 ⦌ 𝐵  ∧  ⦋ 𝑤  /  𝑥 ⦌ 𝐵  ∈  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  →  𝑦  ∈  ∪  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  | 
						
						
							| 149 | 
							
								128 147 148
							 | 
							syl2anc | 
							⊢ ( ( ( 𝜑  ∧  𝑤  ∈  𝐴 )  ∧  𝑦  ∈  ( ⦋ 𝑤  /  𝑥 ⦌ 𝐵  ∩  𝐶 ) )  →  𝑦  ∈  ∪  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  | 
						
						
							| 150 | 
							
								
							 | 
							elinel2 | 
							⊢ ( 𝑦  ∈  ( ⦋ 𝑤  /  𝑥 ⦌ 𝐵  ∩  𝐶 )  →  𝑦  ∈  𝐶 )  | 
						
						
							| 151 | 
							
								150
							 | 
							adantl | 
							⊢ ( ( ( 𝜑  ∧  𝑤  ∈  𝐴 )  ∧  𝑦  ∈  ( ⦋ 𝑤  /  𝑥 ⦌ 𝐵  ∩  𝐶 ) )  →  𝑦  ∈  𝐶 )  | 
						
						
							| 152 | 
							
								149 151
							 | 
							elind | 
							⊢ ( ( ( 𝜑  ∧  𝑤  ∈  𝐴 )  ∧  𝑦  ∈  ( ⦋ 𝑤  /  𝑥 ⦌ 𝐵  ∩  𝐶 ) )  →  𝑦  ∈  ( ∪  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∩  𝐶 ) )  | 
						
						
							| 153 | 
							
								
							 | 
							nfv | 
							⊢ Ⅎ 𝑤 𝑦  ∈  ( 𝐵  ∩  𝐶 )  | 
						
						
							| 154 | 
							
								116
							 | 
							nfcri | 
							⊢ Ⅎ 𝑥 𝑦  ∈  ( ⦋ 𝑤  /  𝑥 ⦌ 𝐵  ∩  𝐶 )  | 
						
						
							| 155 | 
							
								119
							 | 
							eleq2d | 
							⊢ ( 𝑥  =  𝑤  →  ( 𝑦  ∈  ( 𝐵  ∩  𝐶 )  ↔  𝑦  ∈  ( ⦋ 𝑤  /  𝑥 ⦌ 𝐵  ∩  𝐶 ) ) )  | 
						
						
							| 156 | 
							
								153 154 155
							 | 
							cbvriotaw | 
							⊢ ( ℩ 𝑥  ∈  𝐴 𝑦  ∈  ( 𝐵  ∩  𝐶 ) )  =  ( ℩ 𝑤  ∈  𝐴 𝑦  ∈  ( ⦋ 𝑤  /  𝑥 ⦌ 𝐵  ∩  𝐶 ) )  | 
						
						
							| 157 | 
							
								
							 | 
							simpr | 
							⊢ ( ( ( 𝜑  ∧  𝑤  ∈  𝐴 )  ∧  𝑦  ∈  ( ⦋ 𝑤  /  𝑥 ⦌ 𝐵  ∩  𝐶 ) )  →  𝑦  ∈  ( ⦋ 𝑤  /  𝑥 ⦌ 𝐵  ∩  𝐶 ) )  | 
						
						
							| 158 | 
							
								
							 | 
							rspe | 
							⊢ ( ( 𝑤  ∈  𝐴  ∧  𝑦  ∈  ( ⦋ 𝑤  /  𝑥 ⦌ 𝐵  ∩  𝐶 ) )  →  ∃ 𝑤  ∈  𝐴 𝑦  ∈  ( ⦋ 𝑤  /  𝑥 ⦌ 𝐵  ∩  𝐶 ) )  | 
						
						
							| 159 | 
							
								158
							 | 
							adantll | 
							⊢ ( ( ( 𝜑  ∧  𝑤  ∈  𝐴 )  ∧  𝑦  ∈  ( ⦋ 𝑤  /  𝑥 ⦌ 𝐵  ∩  𝐶 ) )  →  ∃ 𝑤  ∈  𝐴 𝑦  ∈  ( ⦋ 𝑤  /  𝑥 ⦌ 𝐵  ∩  𝐶 ) )  | 
						
						
							| 160 | 
							
								
							 | 
							simpll | 
							⊢ ( ( ( 𝜑  ∧  𝑤  ∈  𝐴 )  ∧  𝑦  ∈  ( ⦋ 𝑤  /  𝑥 ⦌ 𝐵  ∩  𝐶 ) )  →  𝜑 )  | 
						
						
							| 161 | 
							
								
							 | 
							sbequ | 
							⊢ ( 𝑤  =  𝑧  →  ( [ 𝑤  /  𝑥 ] 𝑦  ∈  ( 𝐵  ∩  𝐶 )  ↔  [ 𝑧  /  𝑥 ] 𝑦  ∈  ( 𝐵  ∩  𝐶 ) ) )  | 
						
						
							| 162 | 
							
								
							 | 
							sbsbc | 
							⊢ ( [ 𝑧  /  𝑥 ] 𝑦  ∈  ( 𝐵  ∩  𝐶 )  ↔  [ 𝑧  /  𝑥 ] 𝑦  ∈  ( 𝐵  ∩  𝐶 ) )  | 
						
						
							| 163 | 
							
								162
							 | 
							a1i | 
							⊢ ( 𝑤  =  𝑧  →  ( [ 𝑧  /  𝑥 ] 𝑦  ∈  ( 𝐵  ∩  𝐶 )  ↔  [ 𝑧  /  𝑥 ] 𝑦  ∈  ( 𝐵  ∩  𝐶 ) ) )  | 
						
						
							| 164 | 
							
								
							 | 
							sbcel2 | 
							⊢ ( [ 𝑧  /  𝑥 ] 𝑦  ∈  ( 𝐵  ∩  𝐶 )  ↔  𝑦  ∈  ⦋ 𝑧  /  𝑥 ⦌ ( 𝐵  ∩  𝐶 ) )  | 
						
						
							| 165 | 
							
								
							 | 
							csbin | 
							⊢ ⦋ 𝑧  /  𝑥 ⦌ ( 𝐵  ∩  𝐶 )  =  ( ⦋ 𝑧  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑧  /  𝑥 ⦌ 𝐶 )  | 
						
						
							| 166 | 
							
								
							 | 
							csbconstg | 
							⊢ ( 𝑧  ∈  V  →  ⦋ 𝑧  /  𝑥 ⦌ 𝐶  =  𝐶 )  | 
						
						
							| 167 | 
							
								166
							 | 
							elv | 
							⊢ ⦋ 𝑧  /  𝑥 ⦌ 𝐶  =  𝐶  | 
						
						
							| 168 | 
							
								167
							 | 
							ineq2i | 
							⊢ ( ⦋ 𝑧  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑧  /  𝑥 ⦌ 𝐶 )  =  ( ⦋ 𝑧  /  𝑥 ⦌ 𝐵  ∩  𝐶 )  | 
						
						
							| 169 | 
							
								165 168
							 | 
							eqtri | 
							⊢ ⦋ 𝑧  /  𝑥 ⦌ ( 𝐵  ∩  𝐶 )  =  ( ⦋ 𝑧  /  𝑥 ⦌ 𝐵  ∩  𝐶 )  | 
						
						
							| 170 | 
							
								169
							 | 
							eleq2i | 
							⊢ ( 𝑦  ∈  ⦋ 𝑧  /  𝑥 ⦌ ( 𝐵  ∩  𝐶 )  ↔  𝑦  ∈  ( ⦋ 𝑧  /  𝑥 ⦌ 𝐵  ∩  𝐶 ) )  | 
						
						
							| 171 | 
							
								164 170
							 | 
							bitri | 
							⊢ ( [ 𝑧  /  𝑥 ] 𝑦  ∈  ( 𝐵  ∩  𝐶 )  ↔  𝑦  ∈  ( ⦋ 𝑧  /  𝑥 ⦌ 𝐵  ∩  𝐶 ) )  | 
						
						
							| 172 | 
							
								171
							 | 
							a1i | 
							⊢ ( 𝑤  =  𝑧  →  ( [ 𝑧  /  𝑥 ] 𝑦  ∈  ( 𝐵  ∩  𝐶 )  ↔  𝑦  ∈  ( ⦋ 𝑧  /  𝑥 ⦌ 𝐵  ∩  𝐶 ) ) )  | 
						
						
							| 173 | 
							
								161 163 172
							 | 
							3bitrd | 
							⊢ ( 𝑤  =  𝑧  →  ( [ 𝑤  /  𝑥 ] 𝑦  ∈  ( 𝐵  ∩  𝐶 )  ↔  𝑦  ∈  ( ⦋ 𝑧  /  𝑥 ⦌ 𝐵  ∩  𝐶 ) ) )  | 
						
						
							| 174 | 
							
								173
							 | 
							anbi2d | 
							⊢ ( 𝑤  =  𝑧  →  ( ( 𝑦  ∈  ( 𝐵  ∩  𝐶 )  ∧  [ 𝑤  /  𝑥 ] 𝑦  ∈  ( 𝐵  ∩  𝐶 ) )  ↔  ( 𝑦  ∈  ( 𝐵  ∩  𝐶 )  ∧  𝑦  ∈  ( ⦋ 𝑧  /  𝑥 ⦌ 𝐵  ∩  𝐶 ) ) ) )  | 
						
						
							| 175 | 
							
								
							 | 
							equequ2 | 
							⊢ ( 𝑤  =  𝑧  →  ( 𝑥  =  𝑤  ↔  𝑥  =  𝑧 ) )  | 
						
						
							| 176 | 
							
								174 175
							 | 
							imbi12d | 
							⊢ ( 𝑤  =  𝑧  →  ( ( ( 𝑦  ∈  ( 𝐵  ∩  𝐶 )  ∧  [ 𝑤  /  𝑥 ] 𝑦  ∈  ( 𝐵  ∩  𝐶 ) )  →  𝑥  =  𝑤 )  ↔  ( ( 𝑦  ∈  ( 𝐵  ∩  𝐶 )  ∧  𝑦  ∈  ( ⦋ 𝑧  /  𝑥 ⦌ 𝐵  ∩  𝐶 ) )  →  𝑥  =  𝑧 ) ) )  | 
						
						
							| 177 | 
							
								176
							 | 
							cbvralvw | 
							⊢ ( ∀ 𝑤  ∈  𝐴 ( ( 𝑦  ∈  ( 𝐵  ∩  𝐶 )  ∧  [ 𝑤  /  𝑥 ] 𝑦  ∈  ( 𝐵  ∩  𝐶 ) )  →  𝑥  =  𝑤 )  ↔  ∀ 𝑧  ∈  𝐴 ( ( 𝑦  ∈  ( 𝐵  ∩  𝐶 )  ∧  𝑦  ∈  ( ⦋ 𝑧  /  𝑥 ⦌ 𝐵  ∩  𝐶 ) )  →  𝑥  =  𝑧 ) )  | 
						
						
							| 178 | 
							
								177
							 | 
							ralbii | 
							⊢ ( ∀ 𝑥  ∈  𝐴 ∀ 𝑤  ∈  𝐴 ( ( 𝑦  ∈  ( 𝐵  ∩  𝐶 )  ∧  [ 𝑤  /  𝑥 ] 𝑦  ∈  ( 𝐵  ∩  𝐶 ) )  →  𝑥  =  𝑤 )  ↔  ∀ 𝑥  ∈  𝐴 ∀ 𝑧  ∈  𝐴 ( ( 𝑦  ∈  ( 𝐵  ∩  𝐶 )  ∧  𝑦  ∈  ( ⦋ 𝑧  /  𝑥 ⦌ 𝐵  ∩  𝐶 ) )  →  𝑥  =  𝑧 ) )  | 
						
						
							| 179 | 
							
								
							 | 
							nfv | 
							⊢ Ⅎ 𝑤 ∀ 𝑧  ∈  𝐴 ( ( 𝑦  ∈  ( 𝐵  ∩  𝐶 )  ∧  𝑦  ∈  ( ⦋ 𝑧  /  𝑥 ⦌ 𝐵  ∩  𝐶 ) )  →  𝑥  =  𝑧 )  | 
						
						
							| 180 | 
							
								60 38
							 | 
							nfin | 
							⊢ Ⅎ 𝑥 ( ⦋ 𝑧  /  𝑥 ⦌ 𝐵  ∩  𝐶 )  | 
						
						
							| 181 | 
							
								180
							 | 
							nfcri | 
							⊢ Ⅎ 𝑥 𝑦  ∈  ( ⦋ 𝑧  /  𝑥 ⦌ 𝐵  ∩  𝐶 )  | 
						
						
							| 182 | 
							
								154 181
							 | 
							nfan | 
							⊢ Ⅎ 𝑥 ( 𝑦  ∈  ( ⦋ 𝑤  /  𝑥 ⦌ 𝐵  ∩  𝐶 )  ∧  𝑦  ∈  ( ⦋ 𝑧  /  𝑥 ⦌ 𝐵  ∩  𝐶 ) )  | 
						
						
							| 183 | 
							
								
							 | 
							nfv | 
							⊢ Ⅎ 𝑥 𝑤  =  𝑧  | 
						
						
							| 184 | 
							
								182 183
							 | 
							nfim | 
							⊢ Ⅎ 𝑥 ( ( 𝑦  ∈  ( ⦋ 𝑤  /  𝑥 ⦌ 𝐵  ∩  𝐶 )  ∧  𝑦  ∈  ( ⦋ 𝑧  /  𝑥 ⦌ 𝐵  ∩  𝐶 ) )  →  𝑤  =  𝑧 )  | 
						
						
							| 185 | 
							
								58 184
							 | 
							nfralw | 
							⊢ Ⅎ 𝑥 ∀ 𝑧  ∈  𝐴 ( ( 𝑦  ∈  ( ⦋ 𝑤  /  𝑥 ⦌ 𝐵  ∩  𝐶 )  ∧  𝑦  ∈  ( ⦋ 𝑧  /  𝑥 ⦌ 𝐵  ∩  𝐶 ) )  →  𝑤  =  𝑧 )  | 
						
						
							| 186 | 
							
								155
							 | 
							anbi1d | 
							⊢ ( 𝑥  =  𝑤  →  ( ( 𝑦  ∈  ( 𝐵  ∩  𝐶 )  ∧  𝑦  ∈  ( ⦋ 𝑧  /  𝑥 ⦌ 𝐵  ∩  𝐶 ) )  ↔  ( 𝑦  ∈  ( ⦋ 𝑤  /  𝑥 ⦌ 𝐵  ∩  𝐶 )  ∧  𝑦  ∈  ( ⦋ 𝑧  /  𝑥 ⦌ 𝐵  ∩  𝐶 ) ) ) )  | 
						
						
							| 187 | 
							
								
							 | 
							equequ1 | 
							⊢ ( 𝑥  =  𝑤  →  ( 𝑥  =  𝑧  ↔  𝑤  =  𝑧 ) )  | 
						
						
							| 188 | 
							
								186 187
							 | 
							imbi12d | 
							⊢ ( 𝑥  =  𝑤  →  ( ( ( 𝑦  ∈  ( 𝐵  ∩  𝐶 )  ∧  𝑦  ∈  ( ⦋ 𝑧  /  𝑥 ⦌ 𝐵  ∩  𝐶 ) )  →  𝑥  =  𝑧 )  ↔  ( ( 𝑦  ∈  ( ⦋ 𝑤  /  𝑥 ⦌ 𝐵  ∩  𝐶 )  ∧  𝑦  ∈  ( ⦋ 𝑧  /  𝑥 ⦌ 𝐵  ∩  𝐶 ) )  →  𝑤  =  𝑧 ) ) )  | 
						
						
							| 189 | 
							
								188
							 | 
							ralbidv | 
							⊢ ( 𝑥  =  𝑤  →  ( ∀ 𝑧  ∈  𝐴 ( ( 𝑦  ∈  ( 𝐵  ∩  𝐶 )  ∧  𝑦  ∈  ( ⦋ 𝑧  /  𝑥 ⦌ 𝐵  ∩  𝐶 ) )  →  𝑥  =  𝑧 )  ↔  ∀ 𝑧  ∈  𝐴 ( ( 𝑦  ∈  ( ⦋ 𝑤  /  𝑥 ⦌ 𝐵  ∩  𝐶 )  ∧  𝑦  ∈  ( ⦋ 𝑧  /  𝑥 ⦌ 𝐵  ∩  𝐶 ) )  →  𝑤  =  𝑧 ) ) )  | 
						
						
							| 190 | 
							
								179 185 189
							 | 
							cbvralw | 
							⊢ ( ∀ 𝑥  ∈  𝐴 ∀ 𝑧  ∈  𝐴 ( ( 𝑦  ∈  ( 𝐵  ∩  𝐶 )  ∧  𝑦  ∈  ( ⦋ 𝑧  /  𝑥 ⦌ 𝐵  ∩  𝐶 ) )  →  𝑥  =  𝑧 )  ↔  ∀ 𝑤  ∈  𝐴 ∀ 𝑧  ∈  𝐴 ( ( 𝑦  ∈  ( ⦋ 𝑤  /  𝑥 ⦌ 𝐵  ∩  𝐶 )  ∧  𝑦  ∈  ( ⦋ 𝑧  /  𝑥 ⦌ 𝐵  ∩  𝐶 ) )  →  𝑤  =  𝑧 ) )  | 
						
						
							| 191 | 
							
								
							 | 
							sbsbc | 
							⊢ ( [ 𝑧  /  𝑤 ] 𝑦  ∈  ( ⦋ 𝑤  /  𝑥 ⦌ 𝐵  ∩  𝐶 )  ↔  [ 𝑧  /  𝑤 ] 𝑦  ∈  ( ⦋ 𝑤  /  𝑥 ⦌ 𝐵  ∩  𝐶 ) )  | 
						
						
							| 192 | 
							
								
							 | 
							sbcel2 | 
							⊢ ( [ 𝑧  /  𝑤 ] 𝑦  ∈  ( ⦋ 𝑤  /  𝑥 ⦌ 𝐵  ∩  𝐶 )  ↔  𝑦  ∈  ⦋ 𝑧  /  𝑤 ⦌ ( ⦋ 𝑤  /  𝑥 ⦌ 𝐵  ∩  𝐶 ) )  | 
						
						
							| 193 | 
							
								
							 | 
							csbin | 
							⊢ ⦋ 𝑧  /  𝑤 ⦌ ( ⦋ 𝑤  /  𝑥 ⦌ 𝐵  ∩  𝐶 )  =  ( ⦋ 𝑧  /  𝑤 ⦌ ⦋ 𝑤  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑧  /  𝑤 ⦌ 𝐶 )  | 
						
						
							| 194 | 
							
								
							 | 
							csbcow | 
							⊢ ⦋ 𝑧  /  𝑤 ⦌ ⦋ 𝑤  /  𝑥 ⦌ 𝐵  =  ⦋ 𝑧  /  𝑥 ⦌ 𝐵  | 
						
						
							| 195 | 
							
								
							 | 
							csbconstg | 
							⊢ ( 𝑧  ∈  V  →  ⦋ 𝑧  /  𝑤 ⦌ 𝐶  =  𝐶 )  | 
						
						
							| 196 | 
							
								195
							 | 
							elv | 
							⊢ ⦋ 𝑧  /  𝑤 ⦌ 𝐶  =  𝐶  | 
						
						
							| 197 | 
							
								194 196
							 | 
							ineq12i | 
							⊢ ( ⦋ 𝑧  /  𝑤 ⦌ ⦋ 𝑤  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑧  /  𝑤 ⦌ 𝐶 )  =  ( ⦋ 𝑧  /  𝑥 ⦌ 𝐵  ∩  𝐶 )  | 
						
						
							| 198 | 
							
								193 197
							 | 
							eqtri | 
							⊢ ⦋ 𝑧  /  𝑤 ⦌ ( ⦋ 𝑤  /  𝑥 ⦌ 𝐵  ∩  𝐶 )  =  ( ⦋ 𝑧  /  𝑥 ⦌ 𝐵  ∩  𝐶 )  | 
						
						
							| 199 | 
							
								198
							 | 
							eleq2i | 
							⊢ ( 𝑦  ∈  ⦋ 𝑧  /  𝑤 ⦌ ( ⦋ 𝑤  /  𝑥 ⦌ 𝐵  ∩  𝐶 )  ↔  𝑦  ∈  ( ⦋ 𝑧  /  𝑥 ⦌ 𝐵  ∩  𝐶 ) )  | 
						
						
							| 200 | 
							
								191 192 199
							 | 
							3bitrri | 
							⊢ ( 𝑦  ∈  ( ⦋ 𝑧  /  𝑥 ⦌ 𝐵  ∩  𝐶 )  ↔  [ 𝑧  /  𝑤 ] 𝑦  ∈  ( ⦋ 𝑤  /  𝑥 ⦌ 𝐵  ∩  𝐶 ) )  | 
						
						
							| 201 | 
							
								200
							 | 
							anbi2i | 
							⊢ ( ( 𝑦  ∈  ( ⦋ 𝑤  /  𝑥 ⦌ 𝐵  ∩  𝐶 )  ∧  𝑦  ∈  ( ⦋ 𝑧  /  𝑥 ⦌ 𝐵  ∩  𝐶 ) )  ↔  ( 𝑦  ∈  ( ⦋ 𝑤  /  𝑥 ⦌ 𝐵  ∩  𝐶 )  ∧  [ 𝑧  /  𝑤 ] 𝑦  ∈  ( ⦋ 𝑤  /  𝑥 ⦌ 𝐵  ∩  𝐶 ) ) )  | 
						
						
							| 202 | 
							
								201
							 | 
							imbi1i | 
							⊢ ( ( ( 𝑦  ∈  ( ⦋ 𝑤  /  𝑥 ⦌ 𝐵  ∩  𝐶 )  ∧  𝑦  ∈  ( ⦋ 𝑧  /  𝑥 ⦌ 𝐵  ∩  𝐶 ) )  →  𝑤  =  𝑧 )  ↔  ( ( 𝑦  ∈  ( ⦋ 𝑤  /  𝑥 ⦌ 𝐵  ∩  𝐶 )  ∧  [ 𝑧  /  𝑤 ] 𝑦  ∈  ( ⦋ 𝑤  /  𝑥 ⦌ 𝐵  ∩  𝐶 ) )  →  𝑤  =  𝑧 ) )  | 
						
						
							| 203 | 
							
								202
							 | 
							2ralbii | 
							⊢ ( ∀ 𝑤  ∈  𝐴 ∀ 𝑧  ∈  𝐴 ( ( 𝑦  ∈  ( ⦋ 𝑤  /  𝑥 ⦌ 𝐵  ∩  𝐶 )  ∧  𝑦  ∈  ( ⦋ 𝑧  /  𝑥 ⦌ 𝐵  ∩  𝐶 ) )  →  𝑤  =  𝑧 )  ↔  ∀ 𝑤  ∈  𝐴 ∀ 𝑧  ∈  𝐴 ( ( 𝑦  ∈  ( ⦋ 𝑤  /  𝑥 ⦌ 𝐵  ∩  𝐶 )  ∧  [ 𝑧  /  𝑤 ] 𝑦  ∈  ( ⦋ 𝑤  /  𝑥 ⦌ 𝐵  ∩  𝐶 ) )  →  𝑤  =  𝑧 ) )  | 
						
						
							| 204 | 
							
								178 190 203
							 | 
							3bitri | 
							⊢ ( ∀ 𝑥  ∈  𝐴 ∀ 𝑤  ∈  𝐴 ( ( 𝑦  ∈  ( 𝐵  ∩  𝐶 )  ∧  [ 𝑤  /  𝑥 ] 𝑦  ∈  ( 𝐵  ∩  𝐶 ) )  →  𝑥  =  𝑤 )  ↔  ∀ 𝑤  ∈  𝐴 ∀ 𝑧  ∈  𝐴 ( ( 𝑦  ∈  ( ⦋ 𝑤  /  𝑥 ⦌ 𝐵  ∩  𝐶 )  ∧  [ 𝑧  /  𝑤 ] 𝑦  ∈  ( ⦋ 𝑤  /  𝑥 ⦌ 𝐵  ∩  𝐶 ) )  →  𝑤  =  𝑧 ) )  | 
						
						
							| 205 | 
							
								94 204
							 | 
							sylib | 
							⊢ ( ( 𝜑  ∧  𝑦  ∈  ( ∪  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∩  𝐶 ) )  →  ∀ 𝑤  ∈  𝐴 ∀ 𝑧  ∈  𝐴 ( ( 𝑦  ∈  ( ⦋ 𝑤  /  𝑥 ⦌ 𝐵  ∩  𝐶 )  ∧  [ 𝑧  /  𝑤 ] 𝑦  ∈  ( ⦋ 𝑤  /  𝑥 ⦌ 𝐵  ∩  𝐶 ) )  →  𝑤  =  𝑧 ) )  | 
						
						
							| 206 | 
							
								160 152 205
							 | 
							syl2anc | 
							⊢ ( ( ( 𝜑  ∧  𝑤  ∈  𝐴 )  ∧  𝑦  ∈  ( ⦋ 𝑤  /  𝑥 ⦌ 𝐵  ∩  𝐶 ) )  →  ∀ 𝑤  ∈  𝐴 ∀ 𝑧  ∈  𝐴 ( ( 𝑦  ∈  ( ⦋ 𝑤  /  𝑥 ⦌ 𝐵  ∩  𝐶 )  ∧  [ 𝑧  /  𝑤 ] 𝑦  ∈  ( ⦋ 𝑤  /  𝑥 ⦌ 𝐵  ∩  𝐶 ) )  →  𝑤  =  𝑧 ) )  | 
						
						
							| 207 | 
							
								
							 | 
							reu2 | 
							⊢ ( ∃! 𝑤  ∈  𝐴 𝑦  ∈  ( ⦋ 𝑤  /  𝑥 ⦌ 𝐵  ∩  𝐶 )  ↔  ( ∃ 𝑤  ∈  𝐴 𝑦  ∈  ( ⦋ 𝑤  /  𝑥 ⦌ 𝐵  ∩  𝐶 )  ∧  ∀ 𝑤  ∈  𝐴 ∀ 𝑧  ∈  𝐴 ( ( 𝑦  ∈  ( ⦋ 𝑤  /  𝑥 ⦌ 𝐵  ∩  𝐶 )  ∧  [ 𝑧  /  𝑤 ] 𝑦  ∈  ( ⦋ 𝑤  /  𝑥 ⦌ 𝐵  ∩  𝐶 ) )  →  𝑤  =  𝑧 ) ) )  | 
						
						
							| 208 | 
							
								159 206 207
							 | 
							sylanbrc | 
							⊢ ( ( ( 𝜑  ∧  𝑤  ∈  𝐴 )  ∧  𝑦  ∈  ( ⦋ 𝑤  /  𝑥 ⦌ 𝐵  ∩  𝐶 ) )  →  ∃! 𝑤  ∈  𝐴 𝑦  ∈  ( ⦋ 𝑤  /  𝑥 ⦌ 𝐵  ∩  𝐶 ) )  | 
						
						
							| 209 | 
							
								
							 | 
							riota1 | 
							⊢ ( ∃! 𝑤  ∈  𝐴 𝑦  ∈  ( ⦋ 𝑤  /  𝑥 ⦌ 𝐵  ∩  𝐶 )  →  ( ( 𝑤  ∈  𝐴  ∧  𝑦  ∈  ( ⦋ 𝑤  /  𝑥 ⦌ 𝐵  ∩  𝐶 ) )  ↔  ( ℩ 𝑤  ∈  𝐴 𝑦  ∈  ( ⦋ 𝑤  /  𝑥 ⦌ 𝐵  ∩  𝐶 ) )  =  𝑤 ) )  | 
						
						
							| 210 | 
							
								208 209
							 | 
							syl | 
							⊢ ( ( ( 𝜑  ∧  𝑤  ∈  𝐴 )  ∧  𝑦  ∈  ( ⦋ 𝑤  /  𝑥 ⦌ 𝐵  ∩  𝐶 ) )  →  ( ( 𝑤  ∈  𝐴  ∧  𝑦  ∈  ( ⦋ 𝑤  /  𝑥 ⦌ 𝐵  ∩  𝐶 ) )  ↔  ( ℩ 𝑤  ∈  𝐴 𝑦  ∈  ( ⦋ 𝑤  /  𝑥 ⦌ 𝐵  ∩  𝐶 ) )  =  𝑤 ) )  | 
						
						
							| 211 | 
							
								129 157 210
							 | 
							mpbi2and | 
							⊢ ( ( ( 𝜑  ∧  𝑤  ∈  𝐴 )  ∧  𝑦  ∈  ( ⦋ 𝑤  /  𝑥 ⦌ 𝐵  ∩  𝐶 ) )  →  ( ℩ 𝑤  ∈  𝐴 𝑦  ∈  ( ⦋ 𝑤  /  𝑥 ⦌ 𝐵  ∩  𝐶 ) )  =  𝑤 )  | 
						
						
							| 212 | 
							
								156 211
							 | 
							eqtr2id | 
							⊢ ( ( ( 𝜑  ∧  𝑤  ∈  𝐴 )  ∧  𝑦  ∈  ( ⦋ 𝑤  /  𝑥 ⦌ 𝐵  ∩  𝐶 ) )  →  𝑤  =  ( ℩ 𝑥  ∈  𝐴 𝑦  ∈  ( 𝐵  ∩  𝐶 ) ) )  | 
						
						
							| 213 | 
							
								152 212
							 | 
							jca | 
							⊢ ( ( ( 𝜑  ∧  𝑤  ∈  𝐴 )  ∧  𝑦  ∈  ( ⦋ 𝑤  /  𝑥 ⦌ 𝐵  ∩  𝐶 ) )  →  ( 𝑦  ∈  ( ∪  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∩  𝐶 )  ∧  𝑤  =  ( ℩ 𝑥  ∈  𝐴 𝑦  ∈  ( 𝐵  ∩  𝐶 ) ) ) )  | 
						
						
							| 214 | 
							
								213
							 | 
							ex | 
							⊢ ( ( 𝜑  ∧  𝑤  ∈  𝐴 )  →  ( 𝑦  ∈  ( ⦋ 𝑤  /  𝑥 ⦌ 𝐵  ∩  𝐶 )  →  ( 𝑦  ∈  ( ∪  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∩  𝐶 )  ∧  𝑤  =  ( ℩ 𝑥  ∈  𝐴 𝑦  ∈  ( 𝐵  ∩  𝐶 ) ) ) ) )  | 
						
						
							| 215 | 
							
								126 214
							 | 
							sylan2 | 
							⊢ ( ( 𝜑  ∧  𝑤  ∈  { 𝑥  ∈  𝐴  ∣  ( 𝐵  ∩  𝐶 )  ≠  ∅ } )  →  ( 𝑦  ∈  ( ⦋ 𝑤  /  𝑥 ⦌ 𝐵  ∩  𝐶 )  →  ( 𝑦  ∈  ( ∪  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∩  𝐶 )  ∧  𝑤  =  ( ℩ 𝑥  ∈  𝐴 𝑦  ∈  ( 𝐵  ∩  𝐶 ) ) ) ) )  | 
						
						
							| 216 | 
							
								215
							 | 
							eximdv | 
							⊢ ( ( 𝜑  ∧  𝑤  ∈  { 𝑥  ∈  𝐴  ∣  ( 𝐵  ∩  𝐶 )  ≠  ∅ } )  →  ( ∃ 𝑦 𝑦  ∈  ( ⦋ 𝑤  /  𝑥 ⦌ 𝐵  ∩  𝐶 )  →  ∃ 𝑦 ( 𝑦  ∈  ( ∪  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∩  𝐶 )  ∧  𝑤  =  ( ℩ 𝑥  ∈  𝐴 𝑦  ∈  ( 𝐵  ∩  𝐶 ) ) ) ) )  | 
						
						
							| 217 | 
							
								125 216
							 | 
							mpd | 
							⊢ ( ( 𝜑  ∧  𝑤  ∈  { 𝑥  ∈  𝐴  ∣  ( 𝐵  ∩  𝐶 )  ≠  ∅ } )  →  ∃ 𝑦 ( 𝑦  ∈  ( ∪  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∩  𝐶 )  ∧  𝑤  =  ( ℩ 𝑥  ∈  𝐴 𝑦  ∈  ( 𝐵  ∩  𝐶 ) ) ) )  | 
						
						
							| 218 | 
							
								
							 | 
							df-rex | 
							⊢ ( ∃ 𝑦  ∈  ( ∪  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∩  𝐶 ) 𝑤  =  ( ℩ 𝑥  ∈  𝐴 𝑦  ∈  ( 𝐵  ∩  𝐶 ) )  ↔  ∃ 𝑦 ( 𝑦  ∈  ( ∪  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∩  𝐶 )  ∧  𝑤  =  ( ℩ 𝑥  ∈  𝐴 𝑦  ∈  ( 𝐵  ∩  𝐶 ) ) ) )  | 
						
						
							| 219 | 
							
								217 218
							 | 
							sylibr | 
							⊢ ( ( 𝜑  ∧  𝑤  ∈  { 𝑥  ∈  𝐴  ∣  ( 𝐵  ∩  𝐶 )  ≠  ∅ } )  →  ∃ 𝑦  ∈  ( ∪  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∩  𝐶 ) 𝑤  =  ( ℩ 𝑥  ∈  𝐴 𝑦  ∈  ( 𝐵  ∩  𝐶 ) ) )  | 
						
						
							| 220 | 
							
								219
							 | 
							ralrimiva | 
							⊢ ( 𝜑  →  ∀ 𝑤  ∈  { 𝑥  ∈  𝐴  ∣  ( 𝐵  ∩  𝐶 )  ≠  ∅ } ∃ 𝑦  ∈  ( ∪  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∩  𝐶 ) 𝑤  =  ( ℩ 𝑥  ∈  𝐴 𝑦  ∈  ( 𝐵  ∩  𝐶 ) ) )  | 
						
						
							| 221 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝑦  ∈  ( ∪  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∩  𝐶 )  ↦  ( ℩ 𝑥  ∈  𝐴 𝑦  ∈  ( 𝐵  ∩  𝐶 ) ) )  =  ( 𝑦  ∈  ( ∪  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∩  𝐶 )  ↦  ( ℩ 𝑥  ∈  𝐴 𝑦  ∈  ( 𝐵  ∩  𝐶 ) ) )  | 
						
						
							| 222 | 
							
								221
							 | 
							fompt | 
							⊢ ( ( 𝑦  ∈  ( ∪  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∩  𝐶 )  ↦  ( ℩ 𝑥  ∈  𝐴 𝑦  ∈  ( 𝐵  ∩  𝐶 ) ) ) : ( ∪  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∩  𝐶 ) –onto→ { 𝑥  ∈  𝐴  ∣  ( 𝐵  ∩  𝐶 )  ≠  ∅ }  ↔  ( ∀ 𝑦  ∈  ( ∪  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∩  𝐶 ) ( ℩ 𝑥  ∈  𝐴 𝑦  ∈  ( 𝐵  ∩  𝐶 ) )  ∈  { 𝑥  ∈  𝐴  ∣  ( 𝐵  ∩  𝐶 )  ≠  ∅ }  ∧  ∀ 𝑤  ∈  { 𝑥  ∈  𝐴  ∣  ( 𝐵  ∩  𝐶 )  ≠  ∅ } ∃ 𝑦  ∈  ( ∪  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∩  𝐶 ) 𝑤  =  ( ℩ 𝑥  ∈  𝐴 𝑦  ∈  ( 𝐵  ∩  𝐶 ) ) ) )  | 
						
						
							| 223 | 
							
								115 220 222
							 | 
							sylanbrc | 
							⊢ ( 𝜑  →  ( 𝑦  ∈  ( ∪  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∩  𝐶 )  ↦  ( ℩ 𝑥  ∈  𝐴 𝑦  ∈  ( 𝐵  ∩  𝐶 ) ) ) : ( ∪  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∩  𝐶 ) –onto→ { 𝑥  ∈  𝐴  ∣  ( 𝐵  ∩  𝐶 )  ≠  ∅ } )  | 
						
						
							| 224 | 
							
								
							 | 
							fodomg | 
							⊢ ( ( ∪  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∩  𝐶 )  ∈  V  →  ( ( 𝑦  ∈  ( ∪  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∩  𝐶 )  ↦  ( ℩ 𝑥  ∈  𝐴 𝑦  ∈  ( 𝐵  ∩  𝐶 ) ) ) : ( ∪  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∩  𝐶 ) –onto→ { 𝑥  ∈  𝐴  ∣  ( 𝐵  ∩  𝐶 )  ≠  ∅ }  →  { 𝑥  ∈  𝐴  ∣  ( 𝐵  ∩  𝐶 )  ≠  ∅ }  ≼  ( ∪  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∩  𝐶 ) ) )  | 
						
						
							| 225 | 
							
								8 223 224
							 | 
							sylc | 
							⊢ ( 𝜑  →  { 𝑥  ∈  𝐴  ∣  ( 𝐵  ∩  𝐶 )  ≠  ∅ }  ≼  ( ∪  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∩  𝐶 ) )  | 
						
						
							| 226 | 
							
								
							 | 
							domfi | 
							⊢ ( ( ( ∪  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∩  𝐶 )  ∈  Fin  ∧  { 𝑥  ∈  𝐴  ∣  ( 𝐵  ∩  𝐶 )  ≠  ∅ }  ≼  ( ∪  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∩  𝐶 ) )  →  { 𝑥  ∈  𝐴  ∣  ( 𝐵  ∩  𝐶 )  ≠  ∅ }  ∈  Fin )  | 
						
						
							| 227 | 
							
								6 225 226
							 | 
							syl2anc | 
							⊢ ( 𝜑  →  { 𝑥  ∈  𝐴  ∣  ( 𝐵  ∩  𝐶 )  ≠  ∅ }  ∈  Fin )  |