Step |
Hyp |
Ref |
Expression |
1 |
|
df-disj |
⊢ ( Disj 𝑥 ∈ 𝐴 𝐵 ↔ ∀ 𝑦 ∃* 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) |
2 |
|
elin |
⊢ ( 𝑦 ∈ ( ∪ 𝑥 ∈ 𝐶 𝐵 ∩ ∪ 𝑥 ∈ 𝐷 𝐵 ) ↔ ( 𝑦 ∈ ∪ 𝑥 ∈ 𝐶 𝐵 ∧ 𝑦 ∈ ∪ 𝑥 ∈ 𝐷 𝐵 ) ) |
3 |
|
eliun |
⊢ ( 𝑦 ∈ ∪ 𝑥 ∈ 𝐶 𝐵 ↔ ∃ 𝑥 ∈ 𝐶 𝑦 ∈ 𝐵 ) |
4 |
|
eliun |
⊢ ( 𝑦 ∈ ∪ 𝑥 ∈ 𝐷 𝐵 ↔ ∃ 𝑥 ∈ 𝐷 𝑦 ∈ 𝐵 ) |
5 |
3 4
|
anbi12i |
⊢ ( ( 𝑦 ∈ ∪ 𝑥 ∈ 𝐶 𝐵 ∧ 𝑦 ∈ ∪ 𝑥 ∈ 𝐷 𝐵 ) ↔ ( ∃ 𝑥 ∈ 𝐶 𝑦 ∈ 𝐵 ∧ ∃ 𝑥 ∈ 𝐷 𝑦 ∈ 𝐵 ) ) |
6 |
2 5
|
bitri |
⊢ ( 𝑦 ∈ ( ∪ 𝑥 ∈ 𝐶 𝐵 ∩ ∪ 𝑥 ∈ 𝐷 𝐵 ) ↔ ( ∃ 𝑥 ∈ 𝐶 𝑦 ∈ 𝐵 ∧ ∃ 𝑥 ∈ 𝐷 𝑦 ∈ 𝐵 ) ) |
7 |
|
nfv |
⊢ Ⅎ 𝑧 𝑦 ∈ 𝐵 |
8 |
7
|
rmo2 |
⊢ ( ∃* 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ↔ ∃ 𝑧 ∀ 𝑥 ∈ 𝐴 ( 𝑦 ∈ 𝐵 → 𝑥 = 𝑧 ) ) |
9 |
|
an4 |
⊢ ( ( ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐴 ) ∧ ( ∃ 𝑥 ∈ 𝐶 𝑦 ∈ 𝐵 ∧ ∃ 𝑥 ∈ 𝐷 𝑦 ∈ 𝐵 ) ) ↔ ( ( 𝐶 ⊆ 𝐴 ∧ ∃ 𝑥 ∈ 𝐶 𝑦 ∈ 𝐵 ) ∧ ( 𝐷 ⊆ 𝐴 ∧ ∃ 𝑥 ∈ 𝐷 𝑦 ∈ 𝐵 ) ) ) |
10 |
|
ssralv |
⊢ ( 𝐶 ⊆ 𝐴 → ( ∀ 𝑥 ∈ 𝐴 ( 𝑦 ∈ 𝐵 → 𝑥 = 𝑧 ) → ∀ 𝑥 ∈ 𝐶 ( 𝑦 ∈ 𝐵 → 𝑥 = 𝑧 ) ) ) |
11 |
10
|
impcom |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 ( 𝑦 ∈ 𝐵 → 𝑥 = 𝑧 ) ∧ 𝐶 ⊆ 𝐴 ) → ∀ 𝑥 ∈ 𝐶 ( 𝑦 ∈ 𝐵 → 𝑥 = 𝑧 ) ) |
12 |
|
r19.29 |
⊢ ( ( ∀ 𝑥 ∈ 𝐶 ( 𝑦 ∈ 𝐵 → 𝑥 = 𝑧 ) ∧ ∃ 𝑥 ∈ 𝐶 𝑦 ∈ 𝐵 ) → ∃ 𝑥 ∈ 𝐶 ( ( 𝑦 ∈ 𝐵 → 𝑥 = 𝑧 ) ∧ 𝑦 ∈ 𝐵 ) ) |
13 |
|
id |
⊢ ( ( 𝑦 ∈ 𝐵 → 𝑥 = 𝑧 ) → ( 𝑦 ∈ 𝐵 → 𝑥 = 𝑧 ) ) |
14 |
13
|
imp |
⊢ ( ( ( 𝑦 ∈ 𝐵 → 𝑥 = 𝑧 ) ∧ 𝑦 ∈ 𝐵 ) → 𝑥 = 𝑧 ) |
15 |
14
|
eleq1d |
⊢ ( ( ( 𝑦 ∈ 𝐵 → 𝑥 = 𝑧 ) ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 ∈ 𝐶 ↔ 𝑧 ∈ 𝐶 ) ) |
16 |
15
|
biimpcd |
⊢ ( 𝑥 ∈ 𝐶 → ( ( ( 𝑦 ∈ 𝐵 → 𝑥 = 𝑧 ) ∧ 𝑦 ∈ 𝐵 ) → 𝑧 ∈ 𝐶 ) ) |
17 |
16
|
rexlimiv |
⊢ ( ∃ 𝑥 ∈ 𝐶 ( ( 𝑦 ∈ 𝐵 → 𝑥 = 𝑧 ) ∧ 𝑦 ∈ 𝐵 ) → 𝑧 ∈ 𝐶 ) |
18 |
12 17
|
syl |
⊢ ( ( ∀ 𝑥 ∈ 𝐶 ( 𝑦 ∈ 𝐵 → 𝑥 = 𝑧 ) ∧ ∃ 𝑥 ∈ 𝐶 𝑦 ∈ 𝐵 ) → 𝑧 ∈ 𝐶 ) |
19 |
18
|
ex |
⊢ ( ∀ 𝑥 ∈ 𝐶 ( 𝑦 ∈ 𝐵 → 𝑥 = 𝑧 ) → ( ∃ 𝑥 ∈ 𝐶 𝑦 ∈ 𝐵 → 𝑧 ∈ 𝐶 ) ) |
20 |
11 19
|
syl |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 ( 𝑦 ∈ 𝐵 → 𝑥 = 𝑧 ) ∧ 𝐶 ⊆ 𝐴 ) → ( ∃ 𝑥 ∈ 𝐶 𝑦 ∈ 𝐵 → 𝑧 ∈ 𝐶 ) ) |
21 |
20
|
expimpd |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝑦 ∈ 𝐵 → 𝑥 = 𝑧 ) → ( ( 𝐶 ⊆ 𝐴 ∧ ∃ 𝑥 ∈ 𝐶 𝑦 ∈ 𝐵 ) → 𝑧 ∈ 𝐶 ) ) |
22 |
|
ssralv |
⊢ ( 𝐷 ⊆ 𝐴 → ( ∀ 𝑥 ∈ 𝐴 ( 𝑦 ∈ 𝐵 → 𝑥 = 𝑧 ) → ∀ 𝑥 ∈ 𝐷 ( 𝑦 ∈ 𝐵 → 𝑥 = 𝑧 ) ) ) |
23 |
22
|
impcom |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 ( 𝑦 ∈ 𝐵 → 𝑥 = 𝑧 ) ∧ 𝐷 ⊆ 𝐴 ) → ∀ 𝑥 ∈ 𝐷 ( 𝑦 ∈ 𝐵 → 𝑥 = 𝑧 ) ) |
24 |
|
r19.29 |
⊢ ( ( ∀ 𝑥 ∈ 𝐷 ( 𝑦 ∈ 𝐵 → 𝑥 = 𝑧 ) ∧ ∃ 𝑥 ∈ 𝐷 𝑦 ∈ 𝐵 ) → ∃ 𝑥 ∈ 𝐷 ( ( 𝑦 ∈ 𝐵 → 𝑥 = 𝑧 ) ∧ 𝑦 ∈ 𝐵 ) ) |
25 |
14
|
eleq1d |
⊢ ( ( ( 𝑦 ∈ 𝐵 → 𝑥 = 𝑧 ) ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 ∈ 𝐷 ↔ 𝑧 ∈ 𝐷 ) ) |
26 |
25
|
biimpcd |
⊢ ( 𝑥 ∈ 𝐷 → ( ( ( 𝑦 ∈ 𝐵 → 𝑥 = 𝑧 ) ∧ 𝑦 ∈ 𝐵 ) → 𝑧 ∈ 𝐷 ) ) |
27 |
26
|
rexlimiv |
⊢ ( ∃ 𝑥 ∈ 𝐷 ( ( 𝑦 ∈ 𝐵 → 𝑥 = 𝑧 ) ∧ 𝑦 ∈ 𝐵 ) → 𝑧 ∈ 𝐷 ) |
28 |
24 27
|
syl |
⊢ ( ( ∀ 𝑥 ∈ 𝐷 ( 𝑦 ∈ 𝐵 → 𝑥 = 𝑧 ) ∧ ∃ 𝑥 ∈ 𝐷 𝑦 ∈ 𝐵 ) → 𝑧 ∈ 𝐷 ) |
29 |
28
|
ex |
⊢ ( ∀ 𝑥 ∈ 𝐷 ( 𝑦 ∈ 𝐵 → 𝑥 = 𝑧 ) → ( ∃ 𝑥 ∈ 𝐷 𝑦 ∈ 𝐵 → 𝑧 ∈ 𝐷 ) ) |
30 |
23 29
|
syl |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 ( 𝑦 ∈ 𝐵 → 𝑥 = 𝑧 ) ∧ 𝐷 ⊆ 𝐴 ) → ( ∃ 𝑥 ∈ 𝐷 𝑦 ∈ 𝐵 → 𝑧 ∈ 𝐷 ) ) |
31 |
30
|
expimpd |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝑦 ∈ 𝐵 → 𝑥 = 𝑧 ) → ( ( 𝐷 ⊆ 𝐴 ∧ ∃ 𝑥 ∈ 𝐷 𝑦 ∈ 𝐵 ) → 𝑧 ∈ 𝐷 ) ) |
32 |
21 31
|
anim12d |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝑦 ∈ 𝐵 → 𝑥 = 𝑧 ) → ( ( ( 𝐶 ⊆ 𝐴 ∧ ∃ 𝑥 ∈ 𝐶 𝑦 ∈ 𝐵 ) ∧ ( 𝐷 ⊆ 𝐴 ∧ ∃ 𝑥 ∈ 𝐷 𝑦 ∈ 𝐵 ) ) → ( 𝑧 ∈ 𝐶 ∧ 𝑧 ∈ 𝐷 ) ) ) |
33 |
|
inelcm |
⊢ ( ( 𝑧 ∈ 𝐶 ∧ 𝑧 ∈ 𝐷 ) → ( 𝐶 ∩ 𝐷 ) ≠ ∅ ) |
34 |
32 33
|
syl6 |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝑦 ∈ 𝐵 → 𝑥 = 𝑧 ) → ( ( ( 𝐶 ⊆ 𝐴 ∧ ∃ 𝑥 ∈ 𝐶 𝑦 ∈ 𝐵 ) ∧ ( 𝐷 ⊆ 𝐴 ∧ ∃ 𝑥 ∈ 𝐷 𝑦 ∈ 𝐵 ) ) → ( 𝐶 ∩ 𝐷 ) ≠ ∅ ) ) |
35 |
34
|
exlimiv |
⊢ ( ∃ 𝑧 ∀ 𝑥 ∈ 𝐴 ( 𝑦 ∈ 𝐵 → 𝑥 = 𝑧 ) → ( ( ( 𝐶 ⊆ 𝐴 ∧ ∃ 𝑥 ∈ 𝐶 𝑦 ∈ 𝐵 ) ∧ ( 𝐷 ⊆ 𝐴 ∧ ∃ 𝑥 ∈ 𝐷 𝑦 ∈ 𝐵 ) ) → ( 𝐶 ∩ 𝐷 ) ≠ ∅ ) ) |
36 |
9 35
|
syl5bi |
⊢ ( ∃ 𝑧 ∀ 𝑥 ∈ 𝐴 ( 𝑦 ∈ 𝐵 → 𝑥 = 𝑧 ) → ( ( ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐴 ) ∧ ( ∃ 𝑥 ∈ 𝐶 𝑦 ∈ 𝐵 ∧ ∃ 𝑥 ∈ 𝐷 𝑦 ∈ 𝐵 ) ) → ( 𝐶 ∩ 𝐷 ) ≠ ∅ ) ) |
37 |
36
|
expd |
⊢ ( ∃ 𝑧 ∀ 𝑥 ∈ 𝐴 ( 𝑦 ∈ 𝐵 → 𝑥 = 𝑧 ) → ( ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐴 ) → ( ( ∃ 𝑥 ∈ 𝐶 𝑦 ∈ 𝐵 ∧ ∃ 𝑥 ∈ 𝐷 𝑦 ∈ 𝐵 ) → ( 𝐶 ∩ 𝐷 ) ≠ ∅ ) ) ) |
38 |
8 37
|
sylbi |
⊢ ( ∃* 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 → ( ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐴 ) → ( ( ∃ 𝑥 ∈ 𝐶 𝑦 ∈ 𝐵 ∧ ∃ 𝑥 ∈ 𝐷 𝑦 ∈ 𝐵 ) → ( 𝐶 ∩ 𝐷 ) ≠ ∅ ) ) ) |
39 |
38
|
impcom |
⊢ ( ( ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐴 ) ∧ ∃* 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) → ( ( ∃ 𝑥 ∈ 𝐶 𝑦 ∈ 𝐵 ∧ ∃ 𝑥 ∈ 𝐷 𝑦 ∈ 𝐵 ) → ( 𝐶 ∩ 𝐷 ) ≠ ∅ ) ) |
40 |
6 39
|
syl5bi |
⊢ ( ( ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐴 ) ∧ ∃* 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) → ( 𝑦 ∈ ( ∪ 𝑥 ∈ 𝐶 𝐵 ∩ ∪ 𝑥 ∈ 𝐷 𝐵 ) → ( 𝐶 ∩ 𝐷 ) ≠ ∅ ) ) |
41 |
40
|
necon2bd |
⊢ ( ( ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐴 ) ∧ ∃* 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) → ( ( 𝐶 ∩ 𝐷 ) = ∅ → ¬ 𝑦 ∈ ( ∪ 𝑥 ∈ 𝐶 𝐵 ∩ ∪ 𝑥 ∈ 𝐷 𝐵 ) ) ) |
42 |
41
|
impancom |
⊢ ( ( ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐴 ) ∧ ( 𝐶 ∩ 𝐷 ) = ∅ ) → ( ∃* 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 → ¬ 𝑦 ∈ ( ∪ 𝑥 ∈ 𝐶 𝐵 ∩ ∪ 𝑥 ∈ 𝐷 𝐵 ) ) ) |
43 |
42
|
3impa |
⊢ ( ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐴 ∧ ( 𝐶 ∩ 𝐷 ) = ∅ ) → ( ∃* 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 → ¬ 𝑦 ∈ ( ∪ 𝑥 ∈ 𝐶 𝐵 ∩ ∪ 𝑥 ∈ 𝐷 𝐵 ) ) ) |
44 |
43
|
alimdv |
⊢ ( ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐴 ∧ ( 𝐶 ∩ 𝐷 ) = ∅ ) → ( ∀ 𝑦 ∃* 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 → ∀ 𝑦 ¬ 𝑦 ∈ ( ∪ 𝑥 ∈ 𝐶 𝐵 ∩ ∪ 𝑥 ∈ 𝐷 𝐵 ) ) ) |
45 |
1 44
|
syl5bi |
⊢ ( ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐴 ∧ ( 𝐶 ∩ 𝐷 ) = ∅ ) → ( Disj 𝑥 ∈ 𝐴 𝐵 → ∀ 𝑦 ¬ 𝑦 ∈ ( ∪ 𝑥 ∈ 𝐶 𝐵 ∩ ∪ 𝑥 ∈ 𝐷 𝐵 ) ) ) |
46 |
45
|
impcom |
⊢ ( ( Disj 𝑥 ∈ 𝐴 𝐵 ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐴 ∧ ( 𝐶 ∩ 𝐷 ) = ∅ ) ) → ∀ 𝑦 ¬ 𝑦 ∈ ( ∪ 𝑥 ∈ 𝐶 𝐵 ∩ ∪ 𝑥 ∈ 𝐷 𝐵 ) ) |
47 |
|
eq0 |
⊢ ( ( ∪ 𝑥 ∈ 𝐶 𝐵 ∩ ∪ 𝑥 ∈ 𝐷 𝐵 ) = ∅ ↔ ∀ 𝑦 ¬ 𝑦 ∈ ( ∪ 𝑥 ∈ 𝐶 𝐵 ∩ ∪ 𝑥 ∈ 𝐷 𝐵 ) ) |
48 |
46 47
|
sylibr |
⊢ ( ( Disj 𝑥 ∈ 𝐴 𝐵 ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐴 ∧ ( 𝐶 ∩ 𝐷 ) = ∅ ) ) → ( ∪ 𝑥 ∈ 𝐶 𝐵 ∩ ∪ 𝑥 ∈ 𝐷 𝐵 ) = ∅ ) |