Step |
Hyp |
Ref |
Expression |
1 |
|
disjiund.1 |
⊢ ( 𝑎 = 𝑐 → 𝐴 = 𝐶 ) |
2 |
|
disjiund.2 |
⊢ ( 𝑏 = 𝑑 → 𝐶 = 𝐷 ) |
3 |
|
disjiund.3 |
⊢ ( 𝑎 = 𝑐 → 𝑊 = 𝑋 ) |
4 |
|
disjiund.4 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐷 ) → 𝑎 = 𝑐 ) |
5 |
|
eliun |
⊢ ( 𝑥 ∈ ∪ 𝑏 ∈ 𝑊 𝐴 ↔ ∃ 𝑏 ∈ 𝑊 𝑥 ∈ 𝐴 ) |
6 |
|
eliun |
⊢ ( 𝑥 ∈ ∪ 𝑏 ∈ 𝑋 𝐶 ↔ ∃ 𝑏 ∈ 𝑋 𝑥 ∈ 𝐶 ) |
7 |
2
|
eleq2d |
⊢ ( 𝑏 = 𝑑 → ( 𝑥 ∈ 𝐶 ↔ 𝑥 ∈ 𝐷 ) ) |
8 |
7
|
cbvrexvw |
⊢ ( ∃ 𝑏 ∈ 𝑋 𝑥 ∈ 𝐶 ↔ ∃ 𝑑 ∈ 𝑋 𝑥 ∈ 𝐷 ) |
9 |
4
|
3exp |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 → ( 𝑥 ∈ 𝐷 → 𝑎 = 𝑐 ) ) ) |
10 |
9
|
rexlimdvw |
⊢ ( 𝜑 → ( ∃ 𝑏 ∈ 𝑊 𝑥 ∈ 𝐴 → ( 𝑥 ∈ 𝐷 → 𝑎 = 𝑐 ) ) ) |
11 |
10
|
imp |
⊢ ( ( 𝜑 ∧ ∃ 𝑏 ∈ 𝑊 𝑥 ∈ 𝐴 ) → ( 𝑥 ∈ 𝐷 → 𝑎 = 𝑐 ) ) |
12 |
11
|
rexlimdvw |
⊢ ( ( 𝜑 ∧ ∃ 𝑏 ∈ 𝑊 𝑥 ∈ 𝐴 ) → ( ∃ 𝑑 ∈ 𝑋 𝑥 ∈ 𝐷 → 𝑎 = 𝑐 ) ) |
13 |
8 12
|
syl5bi |
⊢ ( ( 𝜑 ∧ ∃ 𝑏 ∈ 𝑊 𝑥 ∈ 𝐴 ) → ( ∃ 𝑏 ∈ 𝑋 𝑥 ∈ 𝐶 → 𝑎 = 𝑐 ) ) |
14 |
6 13
|
syl5bi |
⊢ ( ( 𝜑 ∧ ∃ 𝑏 ∈ 𝑊 𝑥 ∈ 𝐴 ) → ( 𝑥 ∈ ∪ 𝑏 ∈ 𝑋 𝐶 → 𝑎 = 𝑐 ) ) |
15 |
14
|
con3d |
⊢ ( ( 𝜑 ∧ ∃ 𝑏 ∈ 𝑊 𝑥 ∈ 𝐴 ) → ( ¬ 𝑎 = 𝑐 → ¬ 𝑥 ∈ ∪ 𝑏 ∈ 𝑋 𝐶 ) ) |
16 |
15
|
impancom |
⊢ ( ( 𝜑 ∧ ¬ 𝑎 = 𝑐 ) → ( ∃ 𝑏 ∈ 𝑊 𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ ∪ 𝑏 ∈ 𝑋 𝐶 ) ) |
17 |
5 16
|
syl5bi |
⊢ ( ( 𝜑 ∧ ¬ 𝑎 = 𝑐 ) → ( 𝑥 ∈ ∪ 𝑏 ∈ 𝑊 𝐴 → ¬ 𝑥 ∈ ∪ 𝑏 ∈ 𝑋 𝐶 ) ) |
18 |
17
|
ralrimiv |
⊢ ( ( 𝜑 ∧ ¬ 𝑎 = 𝑐 ) → ∀ 𝑥 ∈ ∪ 𝑏 ∈ 𝑊 𝐴 ¬ 𝑥 ∈ ∪ 𝑏 ∈ 𝑋 𝐶 ) |
19 |
|
disj |
⊢ ( ( ∪ 𝑏 ∈ 𝑊 𝐴 ∩ ∪ 𝑏 ∈ 𝑋 𝐶 ) = ∅ ↔ ∀ 𝑥 ∈ ∪ 𝑏 ∈ 𝑊 𝐴 ¬ 𝑥 ∈ ∪ 𝑏 ∈ 𝑋 𝐶 ) |
20 |
18 19
|
sylibr |
⊢ ( ( 𝜑 ∧ ¬ 𝑎 = 𝑐 ) → ( ∪ 𝑏 ∈ 𝑊 𝐴 ∩ ∪ 𝑏 ∈ 𝑋 𝐶 ) = ∅ ) |
21 |
20
|
ex |
⊢ ( 𝜑 → ( ¬ 𝑎 = 𝑐 → ( ∪ 𝑏 ∈ 𝑊 𝐴 ∩ ∪ 𝑏 ∈ 𝑋 𝐶 ) = ∅ ) ) |
22 |
21
|
orrd |
⊢ ( 𝜑 → ( 𝑎 = 𝑐 ∨ ( ∪ 𝑏 ∈ 𝑊 𝐴 ∩ ∪ 𝑏 ∈ 𝑋 𝐶 ) = ∅ ) ) |
23 |
22
|
a1d |
⊢ ( 𝜑 → ( ( 𝑎 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) → ( 𝑎 = 𝑐 ∨ ( ∪ 𝑏 ∈ 𝑊 𝐴 ∩ ∪ 𝑏 ∈ 𝑋 𝐶 ) = ∅ ) ) ) |
24 |
23
|
ralrimivv |
⊢ ( 𝜑 → ∀ 𝑎 ∈ 𝑉 ∀ 𝑐 ∈ 𝑉 ( 𝑎 = 𝑐 ∨ ( ∪ 𝑏 ∈ 𝑊 𝐴 ∩ ∪ 𝑏 ∈ 𝑋 𝐶 ) = ∅ ) ) |
25 |
3 1
|
disjiunb |
⊢ ( Disj 𝑎 ∈ 𝑉 ∪ 𝑏 ∈ 𝑊 𝐴 ↔ ∀ 𝑎 ∈ 𝑉 ∀ 𝑐 ∈ 𝑉 ( 𝑎 = 𝑐 ∨ ( ∪ 𝑏 ∈ 𝑊 𝐴 ∩ ∪ 𝑏 ∈ 𝑋 𝐶 ) = ∅ ) ) |
26 |
24 25
|
sylibr |
⊢ ( 𝜑 → Disj 𝑎 ∈ 𝑉 ∪ 𝑏 ∈ 𝑊 𝐴 ) |