Step |
Hyp |
Ref |
Expression |
1 |
|
disjiunel.1 |
⊢ ( 𝜑 → Disj 𝑥 ∈ 𝐴 𝐵 ) |
2 |
|
disjiunel.2 |
⊢ ( 𝑥 = 𝑌 → 𝐵 = 𝐷 ) |
3 |
|
disjiunel.3 |
⊢ ( 𝜑 → 𝐸 ⊆ 𝐴 ) |
4 |
|
disjiunel.4 |
⊢ ( 𝜑 → 𝑌 ∈ ( 𝐴 ∖ 𝐸 ) ) |
5 |
4
|
eldifad |
⊢ ( 𝜑 → 𝑌 ∈ 𝐴 ) |
6 |
5
|
snssd |
⊢ ( 𝜑 → { 𝑌 } ⊆ 𝐴 ) |
7 |
3 6
|
unssd |
⊢ ( 𝜑 → ( 𝐸 ∪ { 𝑌 } ) ⊆ 𝐴 ) |
8 |
|
disjss1 |
⊢ ( ( 𝐸 ∪ { 𝑌 } ) ⊆ 𝐴 → ( Disj 𝑥 ∈ 𝐴 𝐵 → Disj 𝑥 ∈ ( 𝐸 ∪ { 𝑌 } ) 𝐵 ) ) |
9 |
7 1 8
|
sylc |
⊢ ( 𝜑 → Disj 𝑥 ∈ ( 𝐸 ∪ { 𝑌 } ) 𝐵 ) |
10 |
4
|
eldifbd |
⊢ ( 𝜑 → ¬ 𝑌 ∈ 𝐸 ) |
11 |
2
|
disjunsn |
⊢ ( ( 𝑌 ∈ 𝐴 ∧ ¬ 𝑌 ∈ 𝐸 ) → ( Disj 𝑥 ∈ ( 𝐸 ∪ { 𝑌 } ) 𝐵 ↔ ( Disj 𝑥 ∈ 𝐸 𝐵 ∧ ( ∪ 𝑥 ∈ 𝐸 𝐵 ∩ 𝐷 ) = ∅ ) ) ) |
12 |
5 10 11
|
syl2anc |
⊢ ( 𝜑 → ( Disj 𝑥 ∈ ( 𝐸 ∪ { 𝑌 } ) 𝐵 ↔ ( Disj 𝑥 ∈ 𝐸 𝐵 ∧ ( ∪ 𝑥 ∈ 𝐸 𝐵 ∩ 𝐷 ) = ∅ ) ) ) |
13 |
9 12
|
mpbid |
⊢ ( 𝜑 → ( Disj 𝑥 ∈ 𝐸 𝐵 ∧ ( ∪ 𝑥 ∈ 𝐸 𝐵 ∩ 𝐷 ) = ∅ ) ) |
14 |
13
|
simprd |
⊢ ( 𝜑 → ( ∪ 𝑥 ∈ 𝐸 𝐵 ∩ 𝐷 ) = ∅ ) |