Step |
Hyp |
Ref |
Expression |
1 |
|
dfdisjALTV5 |
⊢ ( Disj 𝑅 ↔ ( ∀ 𝑥 ∈ dom 𝑅 ∀ 𝑦 ∈ dom 𝑅 ( 𝑥 = 𝑦 ∨ ( [ 𝑥 ] 𝑅 ∩ [ 𝑦 ] 𝑅 ) = ∅ ) ∧ Rel 𝑅 ) ) |
2 |
1
|
simplbi |
⊢ ( Disj 𝑅 → ∀ 𝑥 ∈ dom 𝑅 ∀ 𝑦 ∈ dom 𝑅 ( 𝑥 = 𝑦 ∨ ( [ 𝑥 ] 𝑅 ∩ [ 𝑦 ] 𝑅 ) = ∅ ) ) |
3 |
|
rsp2 |
⊢ ( ∀ 𝑥 ∈ dom 𝑅 ∀ 𝑦 ∈ dom 𝑅 ( 𝑥 = 𝑦 ∨ ( [ 𝑥 ] 𝑅 ∩ [ 𝑦 ] 𝑅 ) = ∅ ) → ( ( 𝑥 ∈ dom 𝑅 ∧ 𝑦 ∈ dom 𝑅 ) → ( 𝑥 = 𝑦 ∨ ( [ 𝑥 ] 𝑅 ∩ [ 𝑦 ] 𝑅 ) = ∅ ) ) ) |
4 |
2 3
|
syl |
⊢ ( Disj 𝑅 → ( ( 𝑥 ∈ dom 𝑅 ∧ 𝑦 ∈ dom 𝑅 ) → ( 𝑥 = 𝑦 ∨ ( [ 𝑥 ] 𝑅 ∩ [ 𝑦 ] 𝑅 ) = ∅ ) ) ) |
5 |
|
eceq1 |
⊢ ( 𝑥 = 𝑦 → [ 𝑥 ] 𝑅 = [ 𝑦 ] 𝑅 ) |
6 |
5
|
a1d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐴 ∈ [ 𝑥 ] 𝑅 ∧ 𝐴 ∈ [ 𝑦 ] 𝑅 ) → [ 𝑥 ] 𝑅 = [ 𝑦 ] 𝑅 ) ) |
7 |
|
elin |
⊢ ( 𝐴 ∈ ( [ 𝑥 ] 𝑅 ∩ [ 𝑦 ] 𝑅 ) ↔ ( 𝐴 ∈ [ 𝑥 ] 𝑅 ∧ 𝐴 ∈ [ 𝑦 ] 𝑅 ) ) |
8 |
|
nel02 |
⊢ ( ( [ 𝑥 ] 𝑅 ∩ [ 𝑦 ] 𝑅 ) = ∅ → ¬ 𝐴 ∈ ( [ 𝑥 ] 𝑅 ∩ [ 𝑦 ] 𝑅 ) ) |
9 |
8
|
pm2.21d |
⊢ ( ( [ 𝑥 ] 𝑅 ∩ [ 𝑦 ] 𝑅 ) = ∅ → ( 𝐴 ∈ ( [ 𝑥 ] 𝑅 ∩ [ 𝑦 ] 𝑅 ) → [ 𝑥 ] 𝑅 = [ 𝑦 ] 𝑅 ) ) |
10 |
7 9
|
biimtrrid |
⊢ ( ( [ 𝑥 ] 𝑅 ∩ [ 𝑦 ] 𝑅 ) = ∅ → ( ( 𝐴 ∈ [ 𝑥 ] 𝑅 ∧ 𝐴 ∈ [ 𝑦 ] 𝑅 ) → [ 𝑥 ] 𝑅 = [ 𝑦 ] 𝑅 ) ) |
11 |
6 10
|
jaoi |
⊢ ( ( 𝑥 = 𝑦 ∨ ( [ 𝑥 ] 𝑅 ∩ [ 𝑦 ] 𝑅 ) = ∅ ) → ( ( 𝐴 ∈ [ 𝑥 ] 𝑅 ∧ 𝐴 ∈ [ 𝑦 ] 𝑅 ) → [ 𝑥 ] 𝑅 = [ 𝑦 ] 𝑅 ) ) |
12 |
4 11
|
syl6 |
⊢ ( Disj 𝑅 → ( ( 𝑥 ∈ dom 𝑅 ∧ 𝑦 ∈ dom 𝑅 ) → ( ( 𝐴 ∈ [ 𝑥 ] 𝑅 ∧ 𝐴 ∈ [ 𝑦 ] 𝑅 ) → [ 𝑥 ] 𝑅 = [ 𝑦 ] 𝑅 ) ) ) |