Step |
Hyp |
Ref |
Expression |
1 |
|
disjlem18 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑧 ∈ V ) → ( Disj 𝑅 → ( ( 𝑥 ∈ dom 𝑅 ∧ 𝐴 ∈ [ 𝑥 ] 𝑅 ) → ( 𝑧 ∈ [ 𝑥 ] 𝑅 ↔ 𝐴 ≀ 𝑅 𝑧 ) ) ) ) |
2 |
1
|
elvd |
⊢ ( 𝐴 ∈ 𝑉 → ( Disj 𝑅 → ( ( 𝑥 ∈ dom 𝑅 ∧ 𝐴 ∈ [ 𝑥 ] 𝑅 ) → ( 𝑧 ∈ [ 𝑥 ] 𝑅 ↔ 𝐴 ≀ 𝑅 𝑧 ) ) ) ) |
3 |
2
|
imp31 |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ Disj 𝑅 ) ∧ ( 𝑥 ∈ dom 𝑅 ∧ 𝐴 ∈ [ 𝑥 ] 𝑅 ) ) → ( 𝑧 ∈ [ 𝑥 ] 𝑅 ↔ 𝐴 ≀ 𝑅 𝑧 ) ) |
4 |
|
elecALTV |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑧 ∈ V ) → ( 𝑧 ∈ [ 𝐴 ] ≀ 𝑅 ↔ 𝐴 ≀ 𝑅 𝑧 ) ) |
5 |
4
|
elvd |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝑧 ∈ [ 𝐴 ] ≀ 𝑅 ↔ 𝐴 ≀ 𝑅 𝑧 ) ) |
6 |
5
|
ad2antrr |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ Disj 𝑅 ) ∧ ( 𝑥 ∈ dom 𝑅 ∧ 𝐴 ∈ [ 𝑥 ] 𝑅 ) ) → ( 𝑧 ∈ [ 𝐴 ] ≀ 𝑅 ↔ 𝐴 ≀ 𝑅 𝑧 ) ) |
7 |
3 6
|
bitr4d |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ Disj 𝑅 ) ∧ ( 𝑥 ∈ dom 𝑅 ∧ 𝐴 ∈ [ 𝑥 ] 𝑅 ) ) → ( 𝑧 ∈ [ 𝑥 ] 𝑅 ↔ 𝑧 ∈ [ 𝐴 ] ≀ 𝑅 ) ) |
8 |
7
|
eqrdv |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ Disj 𝑅 ) ∧ ( 𝑥 ∈ dom 𝑅 ∧ 𝐴 ∈ [ 𝑥 ] 𝑅 ) ) → [ 𝑥 ] 𝑅 = [ 𝐴 ] ≀ 𝑅 ) |
9 |
8
|
exp31 |
⊢ ( 𝐴 ∈ 𝑉 → ( Disj 𝑅 → ( ( 𝑥 ∈ dom 𝑅 ∧ 𝐴 ∈ [ 𝑥 ] 𝑅 ) → [ 𝑥 ] 𝑅 = [ 𝐴 ] ≀ 𝑅 ) ) ) |