Metamath Proof Explorer


Theorem disjne

Description: Members of disjoint sets are not equal. (Contributed by NM, 28-Mar-2007) (Proof shortened by Andrew Salmon, 26-Jun-2011)

Ref Expression
Assertion disjne ( ( ( 𝐴𝐵 ) = ∅ ∧ 𝐶𝐴𝐷𝐵 ) → 𝐶𝐷 )

Proof

Step Hyp Ref Expression
1 disj ( ( 𝐴𝐵 ) = ∅ ↔ ∀ 𝑥𝐴 ¬ 𝑥𝐵 )
2 eleq1 ( 𝑥 = 𝐶 → ( 𝑥𝐵𝐶𝐵 ) )
3 2 notbid ( 𝑥 = 𝐶 → ( ¬ 𝑥𝐵 ↔ ¬ 𝐶𝐵 ) )
4 3 rspccva ( ( ∀ 𝑥𝐴 ¬ 𝑥𝐵𝐶𝐴 ) → ¬ 𝐶𝐵 )
5 eleq1a ( 𝐷𝐵 → ( 𝐶 = 𝐷𝐶𝐵 ) )
6 5 necon3bd ( 𝐷𝐵 → ( ¬ 𝐶𝐵𝐶𝐷 ) )
7 4 6 syl5com ( ( ∀ 𝑥𝐴 ¬ 𝑥𝐵𝐶𝐴 ) → ( 𝐷𝐵𝐶𝐷 ) )
8 1 7 sylanb ( ( ( 𝐴𝐵 ) = ∅ ∧ 𝐶𝐴 ) → ( 𝐷𝐵𝐶𝐷 ) )
9 8 3impia ( ( ( 𝐴𝐵 ) = ∅ ∧ 𝐶𝐴𝐷𝐵 ) → 𝐶𝐷 )