Step |
Hyp |
Ref |
Expression |
1 |
|
disjord.1 |
⊢ ( 𝑎 = 𝑏 → 𝐴 = 𝐵 ) |
2 |
|
disjord.2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) → 𝑎 = 𝑏 ) |
3 |
|
orc |
⊢ ( 𝑎 = 𝑏 → ( 𝑎 = 𝑏 ∨ ( 𝐴 ∩ 𝐵 ) = ∅ ) ) |
4 |
3
|
a1d |
⊢ ( 𝑎 = 𝑏 → ( 𝜑 → ( 𝑎 = 𝑏 ∨ ( 𝐴 ∩ 𝐵 ) = ∅ ) ) ) |
5 |
2
|
3expia |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 ∈ 𝐵 → 𝑎 = 𝑏 ) ) |
6 |
5
|
con3d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ¬ 𝑎 = 𝑏 → ¬ 𝑥 ∈ 𝐵 ) ) |
7 |
6
|
impancom |
⊢ ( ( 𝜑 ∧ ¬ 𝑎 = 𝑏 ) → ( 𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵 ) ) |
8 |
7
|
ralrimiv |
⊢ ( ( 𝜑 ∧ ¬ 𝑎 = 𝑏 ) → ∀ 𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵 ) |
9 |
|
disj |
⊢ ( ( 𝐴 ∩ 𝐵 ) = ∅ ↔ ∀ 𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵 ) |
10 |
8 9
|
sylibr |
⊢ ( ( 𝜑 ∧ ¬ 𝑎 = 𝑏 ) → ( 𝐴 ∩ 𝐵 ) = ∅ ) |
11 |
10
|
olcd |
⊢ ( ( 𝜑 ∧ ¬ 𝑎 = 𝑏 ) → ( 𝑎 = 𝑏 ∨ ( 𝐴 ∩ 𝐵 ) = ∅ ) ) |
12 |
11
|
expcom |
⊢ ( ¬ 𝑎 = 𝑏 → ( 𝜑 → ( 𝑎 = 𝑏 ∨ ( 𝐴 ∩ 𝐵 ) = ∅ ) ) ) |
13 |
4 12
|
pm2.61i |
⊢ ( 𝜑 → ( 𝑎 = 𝑏 ∨ ( 𝐴 ∩ 𝐵 ) = ∅ ) ) |
14 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) → ( 𝑎 = 𝑏 ∨ ( 𝐴 ∩ 𝐵 ) = ∅ ) ) |
15 |
14
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑎 ∈ 𝑉 ∀ 𝑏 ∈ 𝑉 ( 𝑎 = 𝑏 ∨ ( 𝐴 ∩ 𝐵 ) = ∅ ) ) |
16 |
1
|
disjor |
⊢ ( Disj 𝑎 ∈ 𝑉 𝐴 ↔ ∀ 𝑎 ∈ 𝑉 ∀ 𝑏 ∈ 𝑉 ( 𝑎 = 𝑏 ∨ ( 𝐴 ∩ 𝐵 ) = ∅ ) ) |
17 |
15 16
|
sylibr |
⊢ ( 𝜑 → Disj 𝑎 ∈ 𝑉 𝐴 ) |