Step |
Hyp |
Ref |
Expression |
1 |
|
disjorf.1 |
⊢ Ⅎ 𝑖 𝐴 |
2 |
|
disjorf.2 |
⊢ Ⅎ 𝑗 𝐴 |
3 |
|
disjorf.3 |
⊢ ( 𝑖 = 𝑗 → 𝐵 = 𝐶 ) |
4 |
|
df-disj |
⊢ ( Disj 𝑖 ∈ 𝐴 𝐵 ↔ ∀ 𝑥 ∃* 𝑖 ∈ 𝐴 𝑥 ∈ 𝐵 ) |
5 |
|
ralcom4 |
⊢ ( ∀ 𝑖 ∈ 𝐴 ∀ 𝑥 ∀ 𝑗 ∈ 𝐴 ( ( 𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶 ) → 𝑖 = 𝑗 ) ↔ ∀ 𝑥 ∀ 𝑖 ∈ 𝐴 ∀ 𝑗 ∈ 𝐴 ( ( 𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶 ) → 𝑖 = 𝑗 ) ) |
6 |
|
orcom |
⊢ ( ( 𝑖 = 𝑗 ∨ ( 𝐵 ∩ 𝐶 ) = ∅ ) ↔ ( ( 𝐵 ∩ 𝐶 ) = ∅ ∨ 𝑖 = 𝑗 ) ) |
7 |
|
df-or |
⊢ ( ( ( 𝐵 ∩ 𝐶 ) = ∅ ∨ 𝑖 = 𝑗 ) ↔ ( ¬ ( 𝐵 ∩ 𝐶 ) = ∅ → 𝑖 = 𝑗 ) ) |
8 |
|
neq0 |
⊢ ( ¬ ( 𝐵 ∩ 𝐶 ) = ∅ ↔ ∃ 𝑥 𝑥 ∈ ( 𝐵 ∩ 𝐶 ) ) |
9 |
|
elin |
⊢ ( 𝑥 ∈ ( 𝐵 ∩ 𝐶 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶 ) ) |
10 |
9
|
exbii |
⊢ ( ∃ 𝑥 𝑥 ∈ ( 𝐵 ∩ 𝐶 ) ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶 ) ) |
11 |
8 10
|
bitri |
⊢ ( ¬ ( 𝐵 ∩ 𝐶 ) = ∅ ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶 ) ) |
12 |
11
|
imbi1i |
⊢ ( ( ¬ ( 𝐵 ∩ 𝐶 ) = ∅ → 𝑖 = 𝑗 ) ↔ ( ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶 ) → 𝑖 = 𝑗 ) ) |
13 |
|
19.23v |
⊢ ( ∀ 𝑥 ( ( 𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶 ) → 𝑖 = 𝑗 ) ↔ ( ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶 ) → 𝑖 = 𝑗 ) ) |
14 |
12 13
|
bitr4i |
⊢ ( ( ¬ ( 𝐵 ∩ 𝐶 ) = ∅ → 𝑖 = 𝑗 ) ↔ ∀ 𝑥 ( ( 𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶 ) → 𝑖 = 𝑗 ) ) |
15 |
6 7 14
|
3bitri |
⊢ ( ( 𝑖 = 𝑗 ∨ ( 𝐵 ∩ 𝐶 ) = ∅ ) ↔ ∀ 𝑥 ( ( 𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶 ) → 𝑖 = 𝑗 ) ) |
16 |
15
|
ralbii |
⊢ ( ∀ 𝑗 ∈ 𝐴 ( 𝑖 = 𝑗 ∨ ( 𝐵 ∩ 𝐶 ) = ∅ ) ↔ ∀ 𝑗 ∈ 𝐴 ∀ 𝑥 ( ( 𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶 ) → 𝑖 = 𝑗 ) ) |
17 |
|
ralcom4 |
⊢ ( ∀ 𝑗 ∈ 𝐴 ∀ 𝑥 ( ( 𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶 ) → 𝑖 = 𝑗 ) ↔ ∀ 𝑥 ∀ 𝑗 ∈ 𝐴 ( ( 𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶 ) → 𝑖 = 𝑗 ) ) |
18 |
16 17
|
bitri |
⊢ ( ∀ 𝑗 ∈ 𝐴 ( 𝑖 = 𝑗 ∨ ( 𝐵 ∩ 𝐶 ) = ∅ ) ↔ ∀ 𝑥 ∀ 𝑗 ∈ 𝐴 ( ( 𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶 ) → 𝑖 = 𝑗 ) ) |
19 |
18
|
ralbii |
⊢ ( ∀ 𝑖 ∈ 𝐴 ∀ 𝑗 ∈ 𝐴 ( 𝑖 = 𝑗 ∨ ( 𝐵 ∩ 𝐶 ) = ∅ ) ↔ ∀ 𝑖 ∈ 𝐴 ∀ 𝑥 ∀ 𝑗 ∈ 𝐴 ( ( 𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶 ) → 𝑖 = 𝑗 ) ) |
20 |
|
nfv |
⊢ Ⅎ 𝑖 𝑥 ∈ 𝐶 |
21 |
3
|
eleq2d |
⊢ ( 𝑖 = 𝑗 → ( 𝑥 ∈ 𝐵 ↔ 𝑥 ∈ 𝐶 ) ) |
22 |
1 2 20 21
|
rmo4f |
⊢ ( ∃* 𝑖 ∈ 𝐴 𝑥 ∈ 𝐵 ↔ ∀ 𝑖 ∈ 𝐴 ∀ 𝑗 ∈ 𝐴 ( ( 𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶 ) → 𝑖 = 𝑗 ) ) |
23 |
22
|
albii |
⊢ ( ∀ 𝑥 ∃* 𝑖 ∈ 𝐴 𝑥 ∈ 𝐵 ↔ ∀ 𝑥 ∀ 𝑖 ∈ 𝐴 ∀ 𝑗 ∈ 𝐴 ( ( 𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶 ) → 𝑖 = 𝑗 ) ) |
24 |
5 19 23
|
3bitr4i |
⊢ ( ∀ 𝑖 ∈ 𝐴 ∀ 𝑗 ∈ 𝐴 ( 𝑖 = 𝑗 ∨ ( 𝐵 ∩ 𝐶 ) = ∅ ) ↔ ∀ 𝑥 ∃* 𝑖 ∈ 𝐴 𝑥 ∈ 𝐵 ) |
25 |
4 24
|
bitr4i |
⊢ ( Disj 𝑖 ∈ 𝐴 𝐵 ↔ ∀ 𝑖 ∈ 𝐴 ∀ 𝑗 ∈ 𝐴 ( 𝑖 = 𝑗 ∨ ( 𝐵 ∩ 𝐶 ) = ∅ ) ) |