Metamath Proof Explorer


Theorem disjorsf

Description: Two ways to say that a collection B ( i ) for i e. A is disjoint. (Contributed by Thierry Arnoux, 8-Mar-2017)

Ref Expression
Hypothesis disjorsf.1 𝑥 𝐴
Assertion disjorsf ( Disj 𝑥𝐴 𝐵 ↔ ∀ 𝑖𝐴𝑗𝐴 ( 𝑖 = 𝑗 ∨ ( 𝑖 / 𝑥 𝐵 𝑗 / 𝑥 𝐵 ) = ∅ ) )

Proof

Step Hyp Ref Expression
1 disjorsf.1 𝑥 𝐴
2 nfcv 𝑖 𝐵
3 nfcsb1v 𝑥 𝑖 / 𝑥 𝐵
4 csbeq1a ( 𝑥 = 𝑖𝐵 = 𝑖 / 𝑥 𝐵 )
5 1 2 3 4 cbvdisjf ( Disj 𝑥𝐴 𝐵Disj 𝑖𝐴 𝑖 / 𝑥 𝐵 )
6 csbeq1 ( 𝑖 = 𝑗 𝑖 / 𝑥 𝐵 = 𝑗 / 𝑥 𝐵 )
7 6 disjor ( Disj 𝑖𝐴 𝑖 / 𝑥 𝐵 ↔ ∀ 𝑖𝐴𝑗𝐴 ( 𝑖 = 𝑗 ∨ ( 𝑖 / 𝑥 𝐵 𝑗 / 𝑥 𝐵 ) = ∅ ) )
8 5 7 bitri ( Disj 𝑥𝐴 𝐵 ↔ ∀ 𝑖𝐴𝑗𝐴 ( 𝑖 = 𝑗 ∨ ( 𝑖 / 𝑥 𝐵 𝑗 / 𝑥 𝐵 ) = ∅ ) )