Step |
Hyp |
Ref |
Expression |
1 |
|
inpreima |
⊢ ( Fun 𝐹 → ( ◡ 𝐹 “ ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) ) = ( ( ◡ 𝐹 “ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ∩ ( ◡ 𝐹 “ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) ) ) |
2 |
|
imaeq2 |
⊢ ( ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) = ∅ → ( ◡ 𝐹 “ ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) ) = ( ◡ 𝐹 “ ∅ ) ) |
3 |
|
ima0 |
⊢ ( ◡ 𝐹 “ ∅ ) = ∅ |
4 |
2 3
|
eqtrdi |
⊢ ( ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) = ∅ → ( ◡ 𝐹 “ ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) ) = ∅ ) |
5 |
1 4
|
sylan9req |
⊢ ( ( Fun 𝐹 ∧ ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) = ∅ ) → ( ( ◡ 𝐹 “ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ∩ ( ◡ 𝐹 “ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) ) = ∅ ) |
6 |
5
|
ex |
⊢ ( Fun 𝐹 → ( ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) = ∅ → ( ( ◡ 𝐹 “ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ∩ ( ◡ 𝐹 “ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) ) = ∅ ) ) |
7 |
|
csbima12 |
⊢ ⦋ 𝑦 / 𝑥 ⦌ ( ◡ 𝐹 “ 𝐵 ) = ( ⦋ 𝑦 / 𝑥 ⦌ ◡ 𝐹 “ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) |
8 |
|
csbconstg |
⊢ ( 𝑦 ∈ V → ⦋ 𝑦 / 𝑥 ⦌ ◡ 𝐹 = ◡ 𝐹 ) |
9 |
8
|
elv |
⊢ ⦋ 𝑦 / 𝑥 ⦌ ◡ 𝐹 = ◡ 𝐹 |
10 |
9
|
imaeq1i |
⊢ ( ⦋ 𝑦 / 𝑥 ⦌ ◡ 𝐹 “ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) = ( ◡ 𝐹 “ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) |
11 |
7 10
|
eqtri |
⊢ ⦋ 𝑦 / 𝑥 ⦌ ( ◡ 𝐹 “ 𝐵 ) = ( ◡ 𝐹 “ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) |
12 |
|
csbima12 |
⊢ ⦋ 𝑧 / 𝑥 ⦌ ( ◡ 𝐹 “ 𝐵 ) = ( ⦋ 𝑧 / 𝑥 ⦌ ◡ 𝐹 “ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) |
13 |
|
csbconstg |
⊢ ( 𝑧 ∈ V → ⦋ 𝑧 / 𝑥 ⦌ ◡ 𝐹 = ◡ 𝐹 ) |
14 |
13
|
elv |
⊢ ⦋ 𝑧 / 𝑥 ⦌ ◡ 𝐹 = ◡ 𝐹 |
15 |
14
|
imaeq1i |
⊢ ( ⦋ 𝑧 / 𝑥 ⦌ ◡ 𝐹 “ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) = ( ◡ 𝐹 “ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) |
16 |
12 15
|
eqtri |
⊢ ⦋ 𝑧 / 𝑥 ⦌ ( ◡ 𝐹 “ 𝐵 ) = ( ◡ 𝐹 “ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) |
17 |
11 16
|
ineq12i |
⊢ ( ⦋ 𝑦 / 𝑥 ⦌ ( ◡ 𝐹 “ 𝐵 ) ∩ ⦋ 𝑧 / 𝑥 ⦌ ( ◡ 𝐹 “ 𝐵 ) ) = ( ( ◡ 𝐹 “ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ∩ ( ◡ 𝐹 “ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) ) |
18 |
17
|
eqeq1i |
⊢ ( ( ⦋ 𝑦 / 𝑥 ⦌ ( ◡ 𝐹 “ 𝐵 ) ∩ ⦋ 𝑧 / 𝑥 ⦌ ( ◡ 𝐹 “ 𝐵 ) ) = ∅ ↔ ( ( ◡ 𝐹 “ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ∩ ( ◡ 𝐹 “ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) ) = ∅ ) |
19 |
6 18
|
syl6ibr |
⊢ ( Fun 𝐹 → ( ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) = ∅ → ( ⦋ 𝑦 / 𝑥 ⦌ ( ◡ 𝐹 “ 𝐵 ) ∩ ⦋ 𝑧 / 𝑥 ⦌ ( ◡ 𝐹 “ 𝐵 ) ) = ∅ ) ) |
20 |
19
|
orim2d |
⊢ ( Fun 𝐹 → ( ( 𝑦 = 𝑧 ∨ ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) = ∅ ) → ( 𝑦 = 𝑧 ∨ ( ⦋ 𝑦 / 𝑥 ⦌ ( ◡ 𝐹 “ 𝐵 ) ∩ ⦋ 𝑧 / 𝑥 ⦌ ( ◡ 𝐹 “ 𝐵 ) ) = ∅ ) ) ) |
21 |
20
|
ralimdv |
⊢ ( Fun 𝐹 → ( ∀ 𝑧 ∈ 𝐴 ( 𝑦 = 𝑧 ∨ ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) = ∅ ) → ∀ 𝑧 ∈ 𝐴 ( 𝑦 = 𝑧 ∨ ( ⦋ 𝑦 / 𝑥 ⦌ ( ◡ 𝐹 “ 𝐵 ) ∩ ⦋ 𝑧 / 𝑥 ⦌ ( ◡ 𝐹 “ 𝐵 ) ) = ∅ ) ) ) |
22 |
21
|
ralimdv |
⊢ ( Fun 𝐹 → ( ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( 𝑦 = 𝑧 ∨ ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) = ∅ ) → ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( 𝑦 = 𝑧 ∨ ( ⦋ 𝑦 / 𝑥 ⦌ ( ◡ 𝐹 “ 𝐵 ) ∩ ⦋ 𝑧 / 𝑥 ⦌ ( ◡ 𝐹 “ 𝐵 ) ) = ∅ ) ) ) |
23 |
|
disjors |
⊢ ( Disj 𝑥 ∈ 𝐴 𝐵 ↔ ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( 𝑦 = 𝑧 ∨ ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) |
24 |
|
disjors |
⊢ ( Disj 𝑥 ∈ 𝐴 ( ◡ 𝐹 “ 𝐵 ) ↔ ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( 𝑦 = 𝑧 ∨ ( ⦋ 𝑦 / 𝑥 ⦌ ( ◡ 𝐹 “ 𝐵 ) ∩ ⦋ 𝑧 / 𝑥 ⦌ ( ◡ 𝐹 “ 𝐵 ) ) = ∅ ) ) |
25 |
22 23 24
|
3imtr4g |
⊢ ( Fun 𝐹 → ( Disj 𝑥 ∈ 𝐴 𝐵 → Disj 𝑥 ∈ 𝐴 ( ◡ 𝐹 “ 𝐵 ) ) ) |
26 |
25
|
imp |
⊢ ( ( Fun 𝐹 ∧ Disj 𝑥 ∈ 𝐴 𝐵 ) → Disj 𝑥 ∈ 𝐴 ( ◡ 𝐹 “ 𝐵 ) ) |