| Step |
Hyp |
Ref |
Expression |
| 1 |
|
disjprg.1 |
⊢ ( 𝑥 = 𝐴 → 𝐶 = 𝐷 ) |
| 2 |
|
disjprg.2 |
⊢ ( 𝑥 = 𝐵 → 𝐶 = 𝐸 ) |
| 3 |
|
eqeq1 |
⊢ ( 𝑦 = 𝐴 → ( 𝑦 = 𝑧 ↔ 𝐴 = 𝑧 ) ) |
| 4 |
|
nfcv |
⊢ Ⅎ 𝑥 𝐴 |
| 5 |
|
nfcv |
⊢ Ⅎ 𝑥 𝐷 |
| 6 |
4 5 1
|
csbhypf |
⊢ ( 𝑦 = 𝐴 → ⦋ 𝑦 / 𝑥 ⦌ 𝐶 = 𝐷 ) |
| 7 |
6
|
ineq1d |
⊢ ( 𝑦 = 𝐴 → ( ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ) = ( 𝐷 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ) ) |
| 8 |
7
|
eqeq1d |
⊢ ( 𝑦 = 𝐴 → ( ( ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ) = ∅ ↔ ( 𝐷 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ) = ∅ ) ) |
| 9 |
3 8
|
orbi12d |
⊢ ( 𝑦 = 𝐴 → ( ( 𝑦 = 𝑧 ∨ ( ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ) = ∅ ) ↔ ( 𝐴 = 𝑧 ∨ ( 𝐷 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ) = ∅ ) ) ) |
| 10 |
9
|
ralbidv |
⊢ ( 𝑦 = 𝐴 → ( ∀ 𝑧 ∈ { 𝐴 , 𝐵 } ( 𝑦 = 𝑧 ∨ ( ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ) = ∅ ) ↔ ∀ 𝑧 ∈ { 𝐴 , 𝐵 } ( 𝐴 = 𝑧 ∨ ( 𝐷 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ) = ∅ ) ) ) |
| 11 |
|
eqeq1 |
⊢ ( 𝑦 = 𝐵 → ( 𝑦 = 𝑧 ↔ 𝐵 = 𝑧 ) ) |
| 12 |
|
nfcv |
⊢ Ⅎ 𝑥 𝐵 |
| 13 |
|
nfcv |
⊢ Ⅎ 𝑥 𝐸 |
| 14 |
12 13 2
|
csbhypf |
⊢ ( 𝑦 = 𝐵 → ⦋ 𝑦 / 𝑥 ⦌ 𝐶 = 𝐸 ) |
| 15 |
14
|
ineq1d |
⊢ ( 𝑦 = 𝐵 → ( ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ) = ( 𝐸 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ) ) |
| 16 |
15
|
eqeq1d |
⊢ ( 𝑦 = 𝐵 → ( ( ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ) = ∅ ↔ ( 𝐸 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ) = ∅ ) ) |
| 17 |
11 16
|
orbi12d |
⊢ ( 𝑦 = 𝐵 → ( ( 𝑦 = 𝑧 ∨ ( ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ) = ∅ ) ↔ ( 𝐵 = 𝑧 ∨ ( 𝐸 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ) = ∅ ) ) ) |
| 18 |
17
|
ralbidv |
⊢ ( 𝑦 = 𝐵 → ( ∀ 𝑧 ∈ { 𝐴 , 𝐵 } ( 𝑦 = 𝑧 ∨ ( ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ) = ∅ ) ↔ ∀ 𝑧 ∈ { 𝐴 , 𝐵 } ( 𝐵 = 𝑧 ∨ ( 𝐸 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ) = ∅ ) ) ) |
| 19 |
10 18
|
ralprg |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( ∀ 𝑦 ∈ { 𝐴 , 𝐵 } ∀ 𝑧 ∈ { 𝐴 , 𝐵 } ( 𝑦 = 𝑧 ∨ ( ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ) = ∅ ) ↔ ( ∀ 𝑧 ∈ { 𝐴 , 𝐵 } ( 𝐴 = 𝑧 ∨ ( 𝐷 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ) = ∅ ) ∧ ∀ 𝑧 ∈ { 𝐴 , 𝐵 } ( 𝐵 = 𝑧 ∨ ( 𝐸 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ) = ∅ ) ) ) ) |
| 20 |
19
|
3adant3 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐴 ≠ 𝐵 ) → ( ∀ 𝑦 ∈ { 𝐴 , 𝐵 } ∀ 𝑧 ∈ { 𝐴 , 𝐵 } ( 𝑦 = 𝑧 ∨ ( ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ) = ∅ ) ↔ ( ∀ 𝑧 ∈ { 𝐴 , 𝐵 } ( 𝐴 = 𝑧 ∨ ( 𝐷 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ) = ∅ ) ∧ ∀ 𝑧 ∈ { 𝐴 , 𝐵 } ( 𝐵 = 𝑧 ∨ ( 𝐸 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ) = ∅ ) ) ) ) |
| 21 |
|
id |
⊢ ( 𝑧 = 𝐴 → 𝑧 = 𝐴 ) |
| 22 |
21
|
eqcomd |
⊢ ( 𝑧 = 𝐴 → 𝐴 = 𝑧 ) |
| 23 |
22
|
orcd |
⊢ ( 𝑧 = 𝐴 → ( 𝐴 = 𝑧 ∨ ( 𝐷 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ) = ∅ ) ) |
| 24 |
|
trud |
⊢ ( 𝑧 = 𝐴 → ⊤ ) |
| 25 |
23 24
|
2thd |
⊢ ( 𝑧 = 𝐴 → ( ( 𝐴 = 𝑧 ∨ ( 𝐷 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ) = ∅ ) ↔ ⊤ ) ) |
| 26 |
|
eqeq2 |
⊢ ( 𝑧 = 𝐵 → ( 𝐴 = 𝑧 ↔ 𝐴 = 𝐵 ) ) |
| 27 |
12 13 2
|
csbhypf |
⊢ ( 𝑧 = 𝐵 → ⦋ 𝑧 / 𝑥 ⦌ 𝐶 = 𝐸 ) |
| 28 |
27
|
ineq2d |
⊢ ( 𝑧 = 𝐵 → ( 𝐷 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ) = ( 𝐷 ∩ 𝐸 ) ) |
| 29 |
28
|
eqeq1d |
⊢ ( 𝑧 = 𝐵 → ( ( 𝐷 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ) = ∅ ↔ ( 𝐷 ∩ 𝐸 ) = ∅ ) ) |
| 30 |
26 29
|
orbi12d |
⊢ ( 𝑧 = 𝐵 → ( ( 𝐴 = 𝑧 ∨ ( 𝐷 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ) = ∅ ) ↔ ( 𝐴 = 𝐵 ∨ ( 𝐷 ∩ 𝐸 ) = ∅ ) ) ) |
| 31 |
25 30
|
ralprg |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( ∀ 𝑧 ∈ { 𝐴 , 𝐵 } ( 𝐴 = 𝑧 ∨ ( 𝐷 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ) = ∅ ) ↔ ( ⊤ ∧ ( 𝐴 = 𝐵 ∨ ( 𝐷 ∩ 𝐸 ) = ∅ ) ) ) ) |
| 32 |
31
|
3adant3 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐴 ≠ 𝐵 ) → ( ∀ 𝑧 ∈ { 𝐴 , 𝐵 } ( 𝐴 = 𝑧 ∨ ( 𝐷 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ) = ∅ ) ↔ ( ⊤ ∧ ( 𝐴 = 𝐵 ∨ ( 𝐷 ∩ 𝐸 ) = ∅ ) ) ) ) |
| 33 |
|
simp3 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐴 ≠ 𝐵 ) → 𝐴 ≠ 𝐵 ) |
| 34 |
33
|
neneqd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐴 ≠ 𝐵 ) → ¬ 𝐴 = 𝐵 ) |
| 35 |
|
biorf |
⊢ ( ¬ 𝐴 = 𝐵 → ( ( 𝐷 ∩ 𝐸 ) = ∅ ↔ ( 𝐴 = 𝐵 ∨ ( 𝐷 ∩ 𝐸 ) = ∅ ) ) ) |
| 36 |
34 35
|
syl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐴 ≠ 𝐵 ) → ( ( 𝐷 ∩ 𝐸 ) = ∅ ↔ ( 𝐴 = 𝐵 ∨ ( 𝐷 ∩ 𝐸 ) = ∅ ) ) ) |
| 37 |
|
tru |
⊢ ⊤ |
| 38 |
37
|
biantrur |
⊢ ( ( 𝐴 = 𝐵 ∨ ( 𝐷 ∩ 𝐸 ) = ∅ ) ↔ ( ⊤ ∧ ( 𝐴 = 𝐵 ∨ ( 𝐷 ∩ 𝐸 ) = ∅ ) ) ) |
| 39 |
36 38
|
bitrdi |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐴 ≠ 𝐵 ) → ( ( 𝐷 ∩ 𝐸 ) = ∅ ↔ ( ⊤ ∧ ( 𝐴 = 𝐵 ∨ ( 𝐷 ∩ 𝐸 ) = ∅ ) ) ) ) |
| 40 |
32 39
|
bitr4d |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐴 ≠ 𝐵 ) → ( ∀ 𝑧 ∈ { 𝐴 , 𝐵 } ( 𝐴 = 𝑧 ∨ ( 𝐷 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ) = ∅ ) ↔ ( 𝐷 ∩ 𝐸 ) = ∅ ) ) |
| 41 |
|
eqeq2 |
⊢ ( 𝑧 = 𝐴 → ( 𝐵 = 𝑧 ↔ 𝐵 = 𝐴 ) ) |
| 42 |
|
eqcom |
⊢ ( 𝐵 = 𝐴 ↔ 𝐴 = 𝐵 ) |
| 43 |
41 42
|
bitrdi |
⊢ ( 𝑧 = 𝐴 → ( 𝐵 = 𝑧 ↔ 𝐴 = 𝐵 ) ) |
| 44 |
4 5 1
|
csbhypf |
⊢ ( 𝑧 = 𝐴 → ⦋ 𝑧 / 𝑥 ⦌ 𝐶 = 𝐷 ) |
| 45 |
44
|
ineq2d |
⊢ ( 𝑧 = 𝐴 → ( 𝐸 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ) = ( 𝐸 ∩ 𝐷 ) ) |
| 46 |
|
incom |
⊢ ( 𝐸 ∩ 𝐷 ) = ( 𝐷 ∩ 𝐸 ) |
| 47 |
45 46
|
eqtrdi |
⊢ ( 𝑧 = 𝐴 → ( 𝐸 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ) = ( 𝐷 ∩ 𝐸 ) ) |
| 48 |
47
|
eqeq1d |
⊢ ( 𝑧 = 𝐴 → ( ( 𝐸 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ) = ∅ ↔ ( 𝐷 ∩ 𝐸 ) = ∅ ) ) |
| 49 |
43 48
|
orbi12d |
⊢ ( 𝑧 = 𝐴 → ( ( 𝐵 = 𝑧 ∨ ( 𝐸 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ) = ∅ ) ↔ ( 𝐴 = 𝐵 ∨ ( 𝐷 ∩ 𝐸 ) = ∅ ) ) ) |
| 50 |
|
id |
⊢ ( 𝑧 = 𝐵 → 𝑧 = 𝐵 ) |
| 51 |
50
|
eqcomd |
⊢ ( 𝑧 = 𝐵 → 𝐵 = 𝑧 ) |
| 52 |
51
|
orcd |
⊢ ( 𝑧 = 𝐵 → ( 𝐵 = 𝑧 ∨ ( 𝐸 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ) = ∅ ) ) |
| 53 |
|
trud |
⊢ ( 𝑧 = 𝐵 → ⊤ ) |
| 54 |
52 53
|
2thd |
⊢ ( 𝑧 = 𝐵 → ( ( 𝐵 = 𝑧 ∨ ( 𝐸 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ) = ∅ ) ↔ ⊤ ) ) |
| 55 |
49 54
|
ralprg |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( ∀ 𝑧 ∈ { 𝐴 , 𝐵 } ( 𝐵 = 𝑧 ∨ ( 𝐸 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ) = ∅ ) ↔ ( ( 𝐴 = 𝐵 ∨ ( 𝐷 ∩ 𝐸 ) = ∅ ) ∧ ⊤ ) ) ) |
| 56 |
55
|
3adant3 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐴 ≠ 𝐵 ) → ( ∀ 𝑧 ∈ { 𝐴 , 𝐵 } ( 𝐵 = 𝑧 ∨ ( 𝐸 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ) = ∅ ) ↔ ( ( 𝐴 = 𝐵 ∨ ( 𝐷 ∩ 𝐸 ) = ∅ ) ∧ ⊤ ) ) ) |
| 57 |
37
|
biantru |
⊢ ( ( 𝐴 = 𝐵 ∨ ( 𝐷 ∩ 𝐸 ) = ∅ ) ↔ ( ( 𝐴 = 𝐵 ∨ ( 𝐷 ∩ 𝐸 ) = ∅ ) ∧ ⊤ ) ) |
| 58 |
36 57
|
bitrdi |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐴 ≠ 𝐵 ) → ( ( 𝐷 ∩ 𝐸 ) = ∅ ↔ ( ( 𝐴 = 𝐵 ∨ ( 𝐷 ∩ 𝐸 ) = ∅ ) ∧ ⊤ ) ) ) |
| 59 |
56 58
|
bitr4d |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐴 ≠ 𝐵 ) → ( ∀ 𝑧 ∈ { 𝐴 , 𝐵 } ( 𝐵 = 𝑧 ∨ ( 𝐸 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ) = ∅ ) ↔ ( 𝐷 ∩ 𝐸 ) = ∅ ) ) |
| 60 |
40 59
|
anbi12d |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐴 ≠ 𝐵 ) → ( ( ∀ 𝑧 ∈ { 𝐴 , 𝐵 } ( 𝐴 = 𝑧 ∨ ( 𝐷 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ) = ∅ ) ∧ ∀ 𝑧 ∈ { 𝐴 , 𝐵 } ( 𝐵 = 𝑧 ∨ ( 𝐸 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ) = ∅ ) ) ↔ ( ( 𝐷 ∩ 𝐸 ) = ∅ ∧ ( 𝐷 ∩ 𝐸 ) = ∅ ) ) ) |
| 61 |
20 60
|
bitrd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐴 ≠ 𝐵 ) → ( ∀ 𝑦 ∈ { 𝐴 , 𝐵 } ∀ 𝑧 ∈ { 𝐴 , 𝐵 } ( 𝑦 = 𝑧 ∨ ( ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ) = ∅ ) ↔ ( ( 𝐷 ∩ 𝐸 ) = ∅ ∧ ( 𝐷 ∩ 𝐸 ) = ∅ ) ) ) |
| 62 |
|
disjors |
⊢ ( Disj 𝑥 ∈ { 𝐴 , 𝐵 } 𝐶 ↔ ∀ 𝑦 ∈ { 𝐴 , 𝐵 } ∀ 𝑧 ∈ { 𝐴 , 𝐵 } ( 𝑦 = 𝑧 ∨ ( ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ) = ∅ ) ) |
| 63 |
|
pm4.24 |
⊢ ( ( 𝐷 ∩ 𝐸 ) = ∅ ↔ ( ( 𝐷 ∩ 𝐸 ) = ∅ ∧ ( 𝐷 ∩ 𝐸 ) = ∅ ) ) |
| 64 |
61 62 63
|
3bitr4g |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐴 ≠ 𝐵 ) → ( Disj 𝑥 ∈ { 𝐴 , 𝐵 } 𝐶 ↔ ( 𝐷 ∩ 𝐸 ) = ∅ ) ) |