Step |
Hyp |
Ref |
Expression |
1 |
|
disjprgw.1 |
⊢ ( 𝑥 = 𝐴 → 𝐶 = 𝐷 ) |
2 |
|
disjprgw.2 |
⊢ ( 𝑥 = 𝐵 → 𝐶 = 𝐸 ) |
3 |
|
eqeq1 |
⊢ ( 𝑦 = 𝐴 → ( 𝑦 = 𝑧 ↔ 𝐴 = 𝑧 ) ) |
4 |
|
nfcv |
⊢ Ⅎ 𝑥 𝐴 |
5 |
|
nfcv |
⊢ Ⅎ 𝑥 𝐷 |
6 |
4 5 1
|
csbhypf |
⊢ ( 𝑦 = 𝐴 → ⦋ 𝑦 / 𝑥 ⦌ 𝐶 = 𝐷 ) |
7 |
6
|
ineq1d |
⊢ ( 𝑦 = 𝐴 → ( ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ) = ( 𝐷 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ) ) |
8 |
7
|
eqeq1d |
⊢ ( 𝑦 = 𝐴 → ( ( ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ) = ∅ ↔ ( 𝐷 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ) = ∅ ) ) |
9 |
3 8
|
orbi12d |
⊢ ( 𝑦 = 𝐴 → ( ( 𝑦 = 𝑧 ∨ ( ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ) = ∅ ) ↔ ( 𝐴 = 𝑧 ∨ ( 𝐷 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ) = ∅ ) ) ) |
10 |
9
|
ralbidv |
⊢ ( 𝑦 = 𝐴 → ( ∀ 𝑧 ∈ { 𝐴 , 𝐵 } ( 𝑦 = 𝑧 ∨ ( ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ) = ∅ ) ↔ ∀ 𝑧 ∈ { 𝐴 , 𝐵 } ( 𝐴 = 𝑧 ∨ ( 𝐷 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ) = ∅ ) ) ) |
11 |
|
eqeq1 |
⊢ ( 𝑦 = 𝐵 → ( 𝑦 = 𝑧 ↔ 𝐵 = 𝑧 ) ) |
12 |
|
nfcv |
⊢ Ⅎ 𝑥 𝐵 |
13 |
|
nfcv |
⊢ Ⅎ 𝑥 𝐸 |
14 |
12 13 2
|
csbhypf |
⊢ ( 𝑦 = 𝐵 → ⦋ 𝑦 / 𝑥 ⦌ 𝐶 = 𝐸 ) |
15 |
14
|
ineq1d |
⊢ ( 𝑦 = 𝐵 → ( ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ) = ( 𝐸 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ) ) |
16 |
15
|
eqeq1d |
⊢ ( 𝑦 = 𝐵 → ( ( ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ) = ∅ ↔ ( 𝐸 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ) = ∅ ) ) |
17 |
11 16
|
orbi12d |
⊢ ( 𝑦 = 𝐵 → ( ( 𝑦 = 𝑧 ∨ ( ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ) = ∅ ) ↔ ( 𝐵 = 𝑧 ∨ ( 𝐸 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ) = ∅ ) ) ) |
18 |
17
|
ralbidv |
⊢ ( 𝑦 = 𝐵 → ( ∀ 𝑧 ∈ { 𝐴 , 𝐵 } ( 𝑦 = 𝑧 ∨ ( ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ) = ∅ ) ↔ ∀ 𝑧 ∈ { 𝐴 , 𝐵 } ( 𝐵 = 𝑧 ∨ ( 𝐸 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ) = ∅ ) ) ) |
19 |
10 18
|
ralprg |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( ∀ 𝑦 ∈ { 𝐴 , 𝐵 } ∀ 𝑧 ∈ { 𝐴 , 𝐵 } ( 𝑦 = 𝑧 ∨ ( ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ) = ∅ ) ↔ ( ∀ 𝑧 ∈ { 𝐴 , 𝐵 } ( 𝐴 = 𝑧 ∨ ( 𝐷 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ) = ∅ ) ∧ ∀ 𝑧 ∈ { 𝐴 , 𝐵 } ( 𝐵 = 𝑧 ∨ ( 𝐸 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ) = ∅ ) ) ) ) |
20 |
19
|
3adant3 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐴 ≠ 𝐵 ) → ( ∀ 𝑦 ∈ { 𝐴 , 𝐵 } ∀ 𝑧 ∈ { 𝐴 , 𝐵 } ( 𝑦 = 𝑧 ∨ ( ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ) = ∅ ) ↔ ( ∀ 𝑧 ∈ { 𝐴 , 𝐵 } ( 𝐴 = 𝑧 ∨ ( 𝐷 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ) = ∅ ) ∧ ∀ 𝑧 ∈ { 𝐴 , 𝐵 } ( 𝐵 = 𝑧 ∨ ( 𝐸 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ) = ∅ ) ) ) ) |
21 |
|
id |
⊢ ( 𝑧 = 𝐴 → 𝑧 = 𝐴 ) |
22 |
21
|
eqcomd |
⊢ ( 𝑧 = 𝐴 → 𝐴 = 𝑧 ) |
23 |
22
|
orcd |
⊢ ( 𝑧 = 𝐴 → ( 𝐴 = 𝑧 ∨ ( 𝐷 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ) = ∅ ) ) |
24 |
|
trud |
⊢ ( 𝑧 = 𝐴 → ⊤ ) |
25 |
23 24
|
2thd |
⊢ ( 𝑧 = 𝐴 → ( ( 𝐴 = 𝑧 ∨ ( 𝐷 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ) = ∅ ) ↔ ⊤ ) ) |
26 |
|
eqeq2 |
⊢ ( 𝑧 = 𝐵 → ( 𝐴 = 𝑧 ↔ 𝐴 = 𝐵 ) ) |
27 |
12 13 2
|
csbhypf |
⊢ ( 𝑧 = 𝐵 → ⦋ 𝑧 / 𝑥 ⦌ 𝐶 = 𝐸 ) |
28 |
27
|
ineq2d |
⊢ ( 𝑧 = 𝐵 → ( 𝐷 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ) = ( 𝐷 ∩ 𝐸 ) ) |
29 |
28
|
eqeq1d |
⊢ ( 𝑧 = 𝐵 → ( ( 𝐷 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ) = ∅ ↔ ( 𝐷 ∩ 𝐸 ) = ∅ ) ) |
30 |
26 29
|
orbi12d |
⊢ ( 𝑧 = 𝐵 → ( ( 𝐴 = 𝑧 ∨ ( 𝐷 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ) = ∅ ) ↔ ( 𝐴 = 𝐵 ∨ ( 𝐷 ∩ 𝐸 ) = ∅ ) ) ) |
31 |
25 30
|
ralprg |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( ∀ 𝑧 ∈ { 𝐴 , 𝐵 } ( 𝐴 = 𝑧 ∨ ( 𝐷 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ) = ∅ ) ↔ ( ⊤ ∧ ( 𝐴 = 𝐵 ∨ ( 𝐷 ∩ 𝐸 ) = ∅ ) ) ) ) |
32 |
31
|
3adant3 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐴 ≠ 𝐵 ) → ( ∀ 𝑧 ∈ { 𝐴 , 𝐵 } ( 𝐴 = 𝑧 ∨ ( 𝐷 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ) = ∅ ) ↔ ( ⊤ ∧ ( 𝐴 = 𝐵 ∨ ( 𝐷 ∩ 𝐸 ) = ∅ ) ) ) ) |
33 |
|
simp3 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐴 ≠ 𝐵 ) → 𝐴 ≠ 𝐵 ) |
34 |
|
neneq |
⊢ ( 𝐴 ≠ 𝐵 → ¬ 𝐴 = 𝐵 ) |
35 |
|
biorf |
⊢ ( ¬ 𝐴 = 𝐵 → ( ( 𝐷 ∩ 𝐸 ) = ∅ ↔ ( 𝐴 = 𝐵 ∨ ( 𝐷 ∩ 𝐸 ) = ∅ ) ) ) |
36 |
33 34 35
|
3syl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐴 ≠ 𝐵 ) → ( ( 𝐷 ∩ 𝐸 ) = ∅ ↔ ( 𝐴 = 𝐵 ∨ ( 𝐷 ∩ 𝐸 ) = ∅ ) ) ) |
37 |
|
tru |
⊢ ⊤ |
38 |
37
|
biantrur |
⊢ ( ( 𝐴 = 𝐵 ∨ ( 𝐷 ∩ 𝐸 ) = ∅ ) ↔ ( ⊤ ∧ ( 𝐴 = 𝐵 ∨ ( 𝐷 ∩ 𝐸 ) = ∅ ) ) ) |
39 |
36 38
|
bitrdi |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐴 ≠ 𝐵 ) → ( ( 𝐷 ∩ 𝐸 ) = ∅ ↔ ( ⊤ ∧ ( 𝐴 = 𝐵 ∨ ( 𝐷 ∩ 𝐸 ) = ∅ ) ) ) ) |
40 |
32 39
|
bitr4d |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐴 ≠ 𝐵 ) → ( ∀ 𝑧 ∈ { 𝐴 , 𝐵 } ( 𝐴 = 𝑧 ∨ ( 𝐷 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ) = ∅ ) ↔ ( 𝐷 ∩ 𝐸 ) = ∅ ) ) |
41 |
|
eqeq2 |
⊢ ( 𝑧 = 𝐴 → ( 𝐵 = 𝑧 ↔ 𝐵 = 𝐴 ) ) |
42 |
|
eqcom |
⊢ ( 𝐵 = 𝐴 ↔ 𝐴 = 𝐵 ) |
43 |
41 42
|
bitrdi |
⊢ ( 𝑧 = 𝐴 → ( 𝐵 = 𝑧 ↔ 𝐴 = 𝐵 ) ) |
44 |
4 5 1
|
csbhypf |
⊢ ( 𝑧 = 𝐴 → ⦋ 𝑧 / 𝑥 ⦌ 𝐶 = 𝐷 ) |
45 |
44
|
ineq2d |
⊢ ( 𝑧 = 𝐴 → ( 𝐸 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ) = ( 𝐸 ∩ 𝐷 ) ) |
46 |
|
incom |
⊢ ( 𝐸 ∩ 𝐷 ) = ( 𝐷 ∩ 𝐸 ) |
47 |
45 46
|
eqtrdi |
⊢ ( 𝑧 = 𝐴 → ( 𝐸 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ) = ( 𝐷 ∩ 𝐸 ) ) |
48 |
47
|
eqeq1d |
⊢ ( 𝑧 = 𝐴 → ( ( 𝐸 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ) = ∅ ↔ ( 𝐷 ∩ 𝐸 ) = ∅ ) ) |
49 |
43 48
|
orbi12d |
⊢ ( 𝑧 = 𝐴 → ( ( 𝐵 = 𝑧 ∨ ( 𝐸 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ) = ∅ ) ↔ ( 𝐴 = 𝐵 ∨ ( 𝐷 ∩ 𝐸 ) = ∅ ) ) ) |
50 |
|
id |
⊢ ( 𝑧 = 𝐵 → 𝑧 = 𝐵 ) |
51 |
50
|
eqcomd |
⊢ ( 𝑧 = 𝐵 → 𝐵 = 𝑧 ) |
52 |
51
|
orcd |
⊢ ( 𝑧 = 𝐵 → ( 𝐵 = 𝑧 ∨ ( 𝐸 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ) = ∅ ) ) |
53 |
|
trud |
⊢ ( 𝑧 = 𝐵 → ⊤ ) |
54 |
52 53
|
2thd |
⊢ ( 𝑧 = 𝐵 → ( ( 𝐵 = 𝑧 ∨ ( 𝐸 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ) = ∅ ) ↔ ⊤ ) ) |
55 |
49 54
|
ralprg |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( ∀ 𝑧 ∈ { 𝐴 , 𝐵 } ( 𝐵 = 𝑧 ∨ ( 𝐸 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ) = ∅ ) ↔ ( ( 𝐴 = 𝐵 ∨ ( 𝐷 ∩ 𝐸 ) = ∅ ) ∧ ⊤ ) ) ) |
56 |
55
|
3adant3 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐴 ≠ 𝐵 ) → ( ∀ 𝑧 ∈ { 𝐴 , 𝐵 } ( 𝐵 = 𝑧 ∨ ( 𝐸 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ) = ∅ ) ↔ ( ( 𝐴 = 𝐵 ∨ ( 𝐷 ∩ 𝐸 ) = ∅ ) ∧ ⊤ ) ) ) |
57 |
37
|
biantru |
⊢ ( ( 𝐴 = 𝐵 ∨ ( 𝐷 ∩ 𝐸 ) = ∅ ) ↔ ( ( 𝐴 = 𝐵 ∨ ( 𝐷 ∩ 𝐸 ) = ∅ ) ∧ ⊤ ) ) |
58 |
36 57
|
bitrdi |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐴 ≠ 𝐵 ) → ( ( 𝐷 ∩ 𝐸 ) = ∅ ↔ ( ( 𝐴 = 𝐵 ∨ ( 𝐷 ∩ 𝐸 ) = ∅ ) ∧ ⊤ ) ) ) |
59 |
56 58
|
bitr4d |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐴 ≠ 𝐵 ) → ( ∀ 𝑧 ∈ { 𝐴 , 𝐵 } ( 𝐵 = 𝑧 ∨ ( 𝐸 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ) = ∅ ) ↔ ( 𝐷 ∩ 𝐸 ) = ∅ ) ) |
60 |
40 59
|
anbi12d |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐴 ≠ 𝐵 ) → ( ( ∀ 𝑧 ∈ { 𝐴 , 𝐵 } ( 𝐴 = 𝑧 ∨ ( 𝐷 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ) = ∅ ) ∧ ∀ 𝑧 ∈ { 𝐴 , 𝐵 } ( 𝐵 = 𝑧 ∨ ( 𝐸 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ) = ∅ ) ) ↔ ( ( 𝐷 ∩ 𝐸 ) = ∅ ∧ ( 𝐷 ∩ 𝐸 ) = ∅ ) ) ) |
61 |
20 60
|
bitrd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐴 ≠ 𝐵 ) → ( ∀ 𝑦 ∈ { 𝐴 , 𝐵 } ∀ 𝑧 ∈ { 𝐴 , 𝐵 } ( 𝑦 = 𝑧 ∨ ( ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ) = ∅ ) ↔ ( ( 𝐷 ∩ 𝐸 ) = ∅ ∧ ( 𝐷 ∩ 𝐸 ) = ∅ ) ) ) |
62 |
|
disjors |
⊢ ( Disj 𝑥 ∈ { 𝐴 , 𝐵 } 𝐶 ↔ ∀ 𝑦 ∈ { 𝐴 , 𝐵 } ∀ 𝑧 ∈ { 𝐴 , 𝐵 } ( 𝑦 = 𝑧 ∨ ( ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ) = ∅ ) ) |
63 |
|
pm4.24 |
⊢ ( ( 𝐷 ∩ 𝐸 ) = ∅ ↔ ( ( 𝐷 ∩ 𝐸 ) = ∅ ∧ ( 𝐷 ∩ 𝐸 ) = ∅ ) ) |
64 |
61 62 63
|
3bitr4g |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐴 ≠ 𝐵 ) → ( Disj 𝑥 ∈ { 𝐴 , 𝐵 } 𝐶 ↔ ( 𝐷 ∩ 𝐸 ) = ∅ ) ) |