Metamath Proof Explorer


Theorem disjprsn

Description: The disjoint intersection of an unordered pair and a singleton. (Contributed by AV, 23-Jan-2021)

Ref Expression
Assertion disjprsn ( ( 𝐴𝐶𝐵𝐶 ) → ( { 𝐴 , 𝐵 } ∩ { 𝐶 } ) = ∅ )

Proof

Step Hyp Ref Expression
1 dfsn2 { 𝐶 } = { 𝐶 , 𝐶 }
2 1 ineq2i ( { 𝐴 , 𝐵 } ∩ { 𝐶 } ) = ( { 𝐴 , 𝐵 } ∩ { 𝐶 , 𝐶 } )
3 disjpr2 ( ( ( 𝐴𝐶𝐵𝐶 ) ∧ ( 𝐴𝐶𝐵𝐶 ) ) → ( { 𝐴 , 𝐵 } ∩ { 𝐶 , 𝐶 } ) = ∅ )
4 3 anidms ( ( 𝐴𝐶𝐵𝐶 ) → ( { 𝐴 , 𝐵 } ∩ { 𝐶 , 𝐶 } ) = ∅ )
5 2 4 eqtrid ( ( 𝐴𝐶𝐵𝐶 ) → ( { 𝐴 , 𝐵 } ∩ { 𝐶 } ) = ∅ )