Description: The disjoint intersection of an unordered pair and a singleton. (Contributed by AV, 23-Jan-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | disjprsn | ⊢ ( ( 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) → ( { 𝐴 , 𝐵 } ∩ { 𝐶 } ) = ∅ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsn2 | ⊢ { 𝐶 } = { 𝐶 , 𝐶 } | |
2 | 1 | ineq2i | ⊢ ( { 𝐴 , 𝐵 } ∩ { 𝐶 } ) = ( { 𝐴 , 𝐵 } ∩ { 𝐶 , 𝐶 } ) |
3 | disjpr2 | ⊢ ( ( ( 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) → ( { 𝐴 , 𝐵 } ∩ { 𝐶 , 𝐶 } ) = ∅ ) | |
4 | 3 | anidms | ⊢ ( ( 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) → ( { 𝐴 , 𝐵 } ∩ { 𝐶 , 𝐶 } ) = ∅ ) |
5 | 2 4 | eqtrid | ⊢ ( ( 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) → ( { 𝐴 , 𝐵 } ∩ { 𝐶 } ) = ∅ ) |