Description: Two ways of saying that two classes are disjoint. (Contributed by Jeff Madsen, 19-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | disjr | ⊢ ( ( 𝐴 ∩ 𝐵 ) = ∅ ↔ ∀ 𝑥 ∈ 𝐵 ¬ 𝑥 ∈ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | incom | ⊢ ( 𝐴 ∩ 𝐵 ) = ( 𝐵 ∩ 𝐴 ) | |
| 2 | 1 | eqeq1i | ⊢ ( ( 𝐴 ∩ 𝐵 ) = ∅ ↔ ( 𝐵 ∩ 𝐴 ) = ∅ ) |
| 3 | disj | ⊢ ( ( 𝐵 ∩ 𝐴 ) = ∅ ↔ ∀ 𝑥 ∈ 𝐵 ¬ 𝑥 ∈ 𝐴 ) | |
| 4 | 2 3 | bitri | ⊢ ( ( 𝐴 ∩ 𝐵 ) = ∅ ↔ ∀ 𝑥 ∈ 𝐵 ¬ 𝑥 ∈ 𝐴 ) |