Description: Two ways of saying that two classes are disjoint. (Contributed by Jeff Madsen, 19-Jun-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | disjr | ⊢ ( ( 𝐴 ∩ 𝐵 ) = ∅ ↔ ∀ 𝑥 ∈ 𝐵 ¬ 𝑥 ∈ 𝐴 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | incom | ⊢ ( 𝐴 ∩ 𝐵 ) = ( 𝐵 ∩ 𝐴 ) | |
2 | 1 | eqeq1i | ⊢ ( ( 𝐴 ∩ 𝐵 ) = ∅ ↔ ( 𝐵 ∩ 𝐴 ) = ∅ ) |
3 | disj | ⊢ ( ( 𝐵 ∩ 𝐴 ) = ∅ ↔ ∀ 𝑥 ∈ 𝐵 ¬ 𝑥 ∈ 𝐴 ) | |
4 | 2 3 | bitri | ⊢ ( ( 𝐴 ∩ 𝐵 ) = ∅ ↔ ∀ 𝑥 ∈ 𝐵 ¬ 𝑥 ∈ 𝐴 ) |