Metamath Proof Explorer


Theorem disjres

Description: Disjoint restriction. (Contributed by Peter Mazsa, 25-Aug-2023)

Ref Expression
Assertion disjres ( Rel 𝑅 → ( Disj ( 𝑅𝐴 ) ↔ ∀ 𝑢𝐴𝑣𝐴 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) = ∅ ) ) )

Proof

Step Hyp Ref Expression
1 relres Rel ( 𝑅𝐴 )
2 dfdisjALTV4 ( Disj ( 𝑅𝐴 ) ↔ ( ∀ 𝑥 ∃* 𝑢 𝑢 ( 𝑅𝐴 ) 𝑥 ∧ Rel ( 𝑅𝐴 ) ) )
3 1 2 mpbiran2 ( Disj ( 𝑅𝐴 ) ↔ ∀ 𝑥 ∃* 𝑢 𝑢 ( 𝑅𝐴 ) 𝑥 )
4 brres ( 𝑥 ∈ V → ( 𝑢 ( 𝑅𝐴 ) 𝑥 ↔ ( 𝑢𝐴𝑢 𝑅 𝑥 ) ) )
5 4 elv ( 𝑢 ( 𝑅𝐴 ) 𝑥 ↔ ( 𝑢𝐴𝑢 𝑅 𝑥 ) )
6 5 mobii ( ∃* 𝑢 𝑢 ( 𝑅𝐴 ) 𝑥 ↔ ∃* 𝑢 ( 𝑢𝐴𝑢 𝑅 𝑥 ) )
7 df-rmo ( ∃* 𝑢𝐴 𝑢 𝑅 𝑥 ↔ ∃* 𝑢 ( 𝑢𝐴𝑢 𝑅 𝑥 ) )
8 6 7 bitr4i ( ∃* 𝑢 𝑢 ( 𝑅𝐴 ) 𝑥 ↔ ∃* 𝑢𝐴 𝑢 𝑅 𝑥 )
9 8 albii ( ∀ 𝑥 ∃* 𝑢 𝑢 ( 𝑅𝐴 ) 𝑥 ↔ ∀ 𝑥 ∃* 𝑢𝐴 𝑢 𝑅 𝑥 )
10 3 9 bitri ( Disj ( 𝑅𝐴 ) ↔ ∀ 𝑥 ∃* 𝑢𝐴 𝑢 𝑅 𝑥 )
11 id ( 𝑢 = 𝑣𝑢 = 𝑣 )
12 11 inecmo ( Rel 𝑅 → ( ∀ 𝑢𝐴𝑣𝐴 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) = ∅ ) ↔ ∀ 𝑥 ∃* 𝑢𝐴 𝑢 𝑅 𝑥 ) )
13 10 12 bitr4id ( Rel 𝑅 → ( Disj ( 𝑅𝐴 ) ↔ ∀ 𝑢𝐴𝑣𝐴 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) = ∅ ) ) )