Step |
Hyp |
Ref |
Expression |
1 |
|
eqeq1 |
⊢ ( 𝑢 = 𝐴 → ( 𝑢 = 𝑣 ↔ 𝐴 = 𝑣 ) ) |
2 |
|
eceq1 |
⊢ ( 𝑢 = 𝐴 → [ 𝑢 ] 𝑅 = [ 𝐴 ] 𝑅 ) |
3 |
2
|
ineq1d |
⊢ ( 𝑢 = 𝐴 → ( [ 𝑢 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) = ( [ 𝐴 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) ) |
4 |
3
|
eqeq1d |
⊢ ( 𝑢 = 𝐴 → ( ( [ 𝑢 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) = ∅ ↔ ( [ 𝐴 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) = ∅ ) ) |
5 |
1 4
|
orbi12d |
⊢ ( 𝑢 = 𝐴 → ( ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) = ∅ ) ↔ ( 𝐴 = 𝑣 ∨ ( [ 𝐴 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) = ∅ ) ) ) |
6 |
|
eqeq2 |
⊢ ( 𝑣 = 𝐴 → ( 𝑢 = 𝑣 ↔ 𝑢 = 𝐴 ) ) |
7 |
|
eceq1 |
⊢ ( 𝑣 = 𝐴 → [ 𝑣 ] 𝑅 = [ 𝐴 ] 𝑅 ) |
8 |
7
|
ineq2d |
⊢ ( 𝑣 = 𝐴 → ( [ 𝑢 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) = ( [ 𝑢 ] 𝑅 ∩ [ 𝐴 ] 𝑅 ) ) |
9 |
8
|
eqeq1d |
⊢ ( 𝑣 = 𝐴 → ( ( [ 𝑢 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) = ∅ ↔ ( [ 𝑢 ] 𝑅 ∩ [ 𝐴 ] 𝑅 ) = ∅ ) ) |
10 |
6 9
|
orbi12d |
⊢ ( 𝑣 = 𝐴 → ( ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) = ∅ ) ↔ ( 𝑢 = 𝐴 ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝐴 ] 𝑅 ) = ∅ ) ) ) |
11 |
|
eqeq1 |
⊢ ( 𝑢 = 𝐴 → ( 𝑢 = 𝐴 ↔ 𝐴 = 𝐴 ) ) |
12 |
2
|
ineq1d |
⊢ ( 𝑢 = 𝐴 → ( [ 𝑢 ] 𝑅 ∩ [ 𝐴 ] 𝑅 ) = ( [ 𝐴 ] 𝑅 ∩ [ 𝐴 ] 𝑅 ) ) |
13 |
12
|
eqeq1d |
⊢ ( 𝑢 = 𝐴 → ( ( [ 𝑢 ] 𝑅 ∩ [ 𝐴 ] 𝑅 ) = ∅ ↔ ( [ 𝐴 ] 𝑅 ∩ [ 𝐴 ] 𝑅 ) = ∅ ) ) |
14 |
11 13
|
orbi12d |
⊢ ( 𝑢 = 𝐴 → ( ( 𝑢 = 𝐴 ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝐴 ] 𝑅 ) = ∅ ) ↔ ( 𝐴 = 𝐴 ∨ ( [ 𝐴 ] 𝑅 ∩ [ 𝐴 ] 𝑅 ) = ∅ ) ) ) |
15 |
5 10 14
|
2ralunsn |
⊢ ( 𝐴 ∈ 𝑉 → ( ∀ 𝑢 ∈ ( 𝐴 ∪ { 𝐴 } ) ∀ 𝑣 ∈ ( 𝐴 ∪ { 𝐴 } ) ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) = ∅ ) ↔ ( ( ∀ 𝑢 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) = ∅ ) ∧ ∀ 𝑢 ∈ 𝐴 ( 𝑢 = 𝐴 ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝐴 ] 𝑅 ) = ∅ ) ) ∧ ( ∀ 𝑣 ∈ 𝐴 ( 𝐴 = 𝑣 ∨ ( [ 𝐴 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) = ∅ ) ∧ ( 𝐴 = 𝐴 ∨ ( [ 𝐴 ] 𝑅 ∩ [ 𝐴 ] 𝑅 ) = ∅ ) ) ) ) ) |
16 |
|
eqid |
⊢ 𝐴 = 𝐴 |
17 |
16
|
orci |
⊢ ( 𝐴 = 𝐴 ∨ ( [ 𝐴 ] 𝑅 ∩ [ 𝐴 ] 𝑅 ) = ∅ ) |
18 |
17
|
biantru |
⊢ ( ∀ 𝑣 ∈ 𝐴 ( 𝐴 = 𝑣 ∨ ( [ 𝐴 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) = ∅ ) ↔ ( ∀ 𝑣 ∈ 𝐴 ( 𝐴 = 𝑣 ∨ ( [ 𝐴 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) = ∅ ) ∧ ( 𝐴 = 𝐴 ∨ ( [ 𝐴 ] 𝑅 ∩ [ 𝐴 ] 𝑅 ) = ∅ ) ) ) |
19 |
18
|
anbi2i |
⊢ ( ( ( ∀ 𝑢 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) = ∅ ) ∧ ∀ 𝑢 ∈ 𝐴 ( 𝑢 = 𝐴 ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝐴 ] 𝑅 ) = ∅ ) ) ∧ ∀ 𝑣 ∈ 𝐴 ( 𝐴 = 𝑣 ∨ ( [ 𝐴 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) = ∅ ) ) ↔ ( ( ∀ 𝑢 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) = ∅ ) ∧ ∀ 𝑢 ∈ 𝐴 ( 𝑢 = 𝐴 ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝐴 ] 𝑅 ) = ∅ ) ) ∧ ( ∀ 𝑣 ∈ 𝐴 ( 𝐴 = 𝑣 ∨ ( [ 𝐴 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) = ∅ ) ∧ ( 𝐴 = 𝐴 ∨ ( [ 𝐴 ] 𝑅 ∩ [ 𝐴 ] 𝑅 ) = ∅ ) ) ) ) |
20 |
15 19
|
bitr4di |
⊢ ( 𝐴 ∈ 𝑉 → ( ∀ 𝑢 ∈ ( 𝐴 ∪ { 𝐴 } ) ∀ 𝑣 ∈ ( 𝐴 ∪ { 𝐴 } ) ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) = ∅ ) ↔ ( ( ∀ 𝑢 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) = ∅ ) ∧ ∀ 𝑢 ∈ 𝐴 ( 𝑢 = 𝐴 ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝐴 ] 𝑅 ) = ∅ ) ) ∧ ∀ 𝑣 ∈ 𝐴 ( 𝐴 = 𝑣 ∨ ( [ 𝐴 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) = ∅ ) ) ) ) |
21 |
|
eqeq1 |
⊢ ( 𝑢 = 𝑣 → ( 𝑢 = 𝐴 ↔ 𝑣 = 𝐴 ) ) |
22 |
|
eqcom |
⊢ ( 𝑣 = 𝐴 ↔ 𝐴 = 𝑣 ) |
23 |
21 22
|
bitrdi |
⊢ ( 𝑢 = 𝑣 → ( 𝑢 = 𝐴 ↔ 𝐴 = 𝑣 ) ) |
24 |
|
eceq1 |
⊢ ( 𝑢 = 𝑣 → [ 𝑢 ] 𝑅 = [ 𝑣 ] 𝑅 ) |
25 |
24
|
ineq1d |
⊢ ( 𝑢 = 𝑣 → ( [ 𝑢 ] 𝑅 ∩ [ 𝐴 ] 𝑅 ) = ( [ 𝑣 ] 𝑅 ∩ [ 𝐴 ] 𝑅 ) ) |
26 |
|
incom |
⊢ ( [ 𝑣 ] 𝑅 ∩ [ 𝐴 ] 𝑅 ) = ( [ 𝐴 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) |
27 |
25 26
|
eqtrdi |
⊢ ( 𝑢 = 𝑣 → ( [ 𝑢 ] 𝑅 ∩ [ 𝐴 ] 𝑅 ) = ( [ 𝐴 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) ) |
28 |
27
|
eqeq1d |
⊢ ( 𝑢 = 𝑣 → ( ( [ 𝑢 ] 𝑅 ∩ [ 𝐴 ] 𝑅 ) = ∅ ↔ ( [ 𝐴 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) = ∅ ) ) |
29 |
23 28
|
orbi12d |
⊢ ( 𝑢 = 𝑣 → ( ( 𝑢 = 𝐴 ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝐴 ] 𝑅 ) = ∅ ) ↔ ( 𝐴 = 𝑣 ∨ ( [ 𝐴 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) = ∅ ) ) ) |
30 |
29
|
cbvralvw |
⊢ ( ∀ 𝑢 ∈ 𝐴 ( 𝑢 = 𝐴 ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝐴 ] 𝑅 ) = ∅ ) ↔ ∀ 𝑣 ∈ 𝐴 ( 𝐴 = 𝑣 ∨ ( [ 𝐴 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) = ∅ ) ) |
31 |
30
|
biimpi |
⊢ ( ∀ 𝑢 ∈ 𝐴 ( 𝑢 = 𝐴 ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝐴 ] 𝑅 ) = ∅ ) → ∀ 𝑣 ∈ 𝐴 ( 𝐴 = 𝑣 ∨ ( [ 𝐴 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) = ∅ ) ) |
32 |
31
|
pm4.71i |
⊢ ( ∀ 𝑢 ∈ 𝐴 ( 𝑢 = 𝐴 ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝐴 ] 𝑅 ) = ∅ ) ↔ ( ∀ 𝑢 ∈ 𝐴 ( 𝑢 = 𝐴 ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝐴 ] 𝑅 ) = ∅ ) ∧ ∀ 𝑣 ∈ 𝐴 ( 𝐴 = 𝑣 ∨ ( [ 𝐴 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) = ∅ ) ) ) |
33 |
32
|
anbi2i |
⊢ ( ( ∀ 𝑢 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) = ∅ ) ∧ ∀ 𝑢 ∈ 𝐴 ( 𝑢 = 𝐴 ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝐴 ] 𝑅 ) = ∅ ) ) ↔ ( ∀ 𝑢 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) = ∅ ) ∧ ( ∀ 𝑢 ∈ 𝐴 ( 𝑢 = 𝐴 ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝐴 ] 𝑅 ) = ∅ ) ∧ ∀ 𝑣 ∈ 𝐴 ( 𝐴 = 𝑣 ∨ ( [ 𝐴 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) = ∅ ) ) ) ) |
34 |
|
3anass |
⊢ ( ( ∀ 𝑢 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) = ∅ ) ∧ ∀ 𝑢 ∈ 𝐴 ( 𝑢 = 𝐴 ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝐴 ] 𝑅 ) = ∅ ) ∧ ∀ 𝑣 ∈ 𝐴 ( 𝐴 = 𝑣 ∨ ( [ 𝐴 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) = ∅ ) ) ↔ ( ∀ 𝑢 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) = ∅ ) ∧ ( ∀ 𝑢 ∈ 𝐴 ( 𝑢 = 𝐴 ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝐴 ] 𝑅 ) = ∅ ) ∧ ∀ 𝑣 ∈ 𝐴 ( 𝐴 = 𝑣 ∨ ( [ 𝐴 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) = ∅ ) ) ) ) |
35 |
|
df-3an |
⊢ ( ( ∀ 𝑢 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) = ∅ ) ∧ ∀ 𝑢 ∈ 𝐴 ( 𝑢 = 𝐴 ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝐴 ] 𝑅 ) = ∅ ) ∧ ∀ 𝑣 ∈ 𝐴 ( 𝐴 = 𝑣 ∨ ( [ 𝐴 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) = ∅ ) ) ↔ ( ( ∀ 𝑢 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) = ∅ ) ∧ ∀ 𝑢 ∈ 𝐴 ( 𝑢 = 𝐴 ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝐴 ] 𝑅 ) = ∅ ) ) ∧ ∀ 𝑣 ∈ 𝐴 ( 𝐴 = 𝑣 ∨ ( [ 𝐴 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) = ∅ ) ) ) |
36 |
33 34 35
|
3bitr2ri |
⊢ ( ( ( ∀ 𝑢 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) = ∅ ) ∧ ∀ 𝑢 ∈ 𝐴 ( 𝑢 = 𝐴 ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝐴 ] 𝑅 ) = ∅ ) ) ∧ ∀ 𝑣 ∈ 𝐴 ( 𝐴 = 𝑣 ∨ ( [ 𝐴 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) = ∅ ) ) ↔ ( ∀ 𝑢 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) = ∅ ) ∧ ∀ 𝑢 ∈ 𝐴 ( 𝑢 = 𝐴 ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝐴 ] 𝑅 ) = ∅ ) ) ) |
37 |
20 36
|
bitrdi |
⊢ ( 𝐴 ∈ 𝑉 → ( ∀ 𝑢 ∈ ( 𝐴 ∪ { 𝐴 } ) ∀ 𝑣 ∈ ( 𝐴 ∪ { 𝐴 } ) ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) = ∅ ) ↔ ( ∀ 𝑢 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) = ∅ ) ∧ ∀ 𝑢 ∈ 𝐴 ( 𝑢 = 𝐴 ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝐴 ] 𝑅 ) = ∅ ) ) ) ) |
38 |
|
elneq |
⊢ ( 𝑢 ∈ 𝐴 → 𝑢 ≠ 𝐴 ) |
39 |
38
|
neneqd |
⊢ ( 𝑢 ∈ 𝐴 → ¬ 𝑢 = 𝐴 ) |
40 |
39
|
biorfd |
⊢ ( 𝑢 ∈ 𝐴 → ( ( [ 𝑢 ] 𝑅 ∩ [ 𝐴 ] 𝑅 ) = ∅ ↔ ( 𝑢 = 𝐴 ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝐴 ] 𝑅 ) = ∅ ) ) ) |
41 |
40
|
ralbiia |
⊢ ( ∀ 𝑢 ∈ 𝐴 ( [ 𝑢 ] 𝑅 ∩ [ 𝐴 ] 𝑅 ) = ∅ ↔ ∀ 𝑢 ∈ 𝐴 ( 𝑢 = 𝐴 ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝐴 ] 𝑅 ) = ∅ ) ) |
42 |
41
|
anbi2i |
⊢ ( ( ∀ 𝑢 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) = ∅ ) ∧ ∀ 𝑢 ∈ 𝐴 ( [ 𝑢 ] 𝑅 ∩ [ 𝐴 ] 𝑅 ) = ∅ ) ↔ ( ∀ 𝑢 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) = ∅ ) ∧ ∀ 𝑢 ∈ 𝐴 ( 𝑢 = 𝐴 ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝐴 ] 𝑅 ) = ∅ ) ) ) |
43 |
37 42
|
bitr4di |
⊢ ( 𝐴 ∈ 𝑉 → ( ∀ 𝑢 ∈ ( 𝐴 ∪ { 𝐴 } ) ∀ 𝑣 ∈ ( 𝐴 ∪ { 𝐴 } ) ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) = ∅ ) ↔ ( ∀ 𝑢 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) = ∅ ) ∧ ∀ 𝑢 ∈ 𝐴 ( [ 𝑢 ] 𝑅 ∩ [ 𝐴 ] 𝑅 ) = ∅ ) ) ) |