Description: Lemma for ressucdifsn2 . (Contributed by Peter Mazsa, 24-Jul-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | disjresundif | ⊢ ( ( 𝐴 ∩ 𝐵 ) = ∅ → ( ( 𝑅 ↾ ( 𝐴 ∪ 𝐵 ) ) ∖ ( 𝑅 ↾ 𝐵 ) ) = ( 𝑅 ↾ 𝐴 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resundi | ⊢ ( 𝑅 ↾ ( 𝐴 ∪ 𝐵 ) ) = ( ( 𝑅 ↾ 𝐴 ) ∪ ( 𝑅 ↾ 𝐵 ) ) | |
2 | 1 | difeq1i | ⊢ ( ( 𝑅 ↾ ( 𝐴 ∪ 𝐵 ) ) ∖ ( 𝑅 ↾ 𝐵 ) ) = ( ( ( 𝑅 ↾ 𝐴 ) ∪ ( 𝑅 ↾ 𝐵 ) ) ∖ ( 𝑅 ↾ 𝐵 ) ) |
3 | difun2 | ⊢ ( ( ( 𝑅 ↾ 𝐴 ) ∪ ( 𝑅 ↾ 𝐵 ) ) ∖ ( 𝑅 ↾ 𝐵 ) ) = ( ( 𝑅 ↾ 𝐴 ) ∖ ( 𝑅 ↾ 𝐵 ) ) | |
4 | 2 3 | eqtri | ⊢ ( ( 𝑅 ↾ ( 𝐴 ∪ 𝐵 ) ) ∖ ( 𝑅 ↾ 𝐵 ) ) = ( ( 𝑅 ↾ 𝐴 ) ∖ ( 𝑅 ↾ 𝐵 ) ) |
5 | disjresdif | ⊢ ( ( 𝐴 ∩ 𝐵 ) = ∅ → ( ( 𝑅 ↾ 𝐴 ) ∖ ( 𝑅 ↾ 𝐵 ) ) = ( 𝑅 ↾ 𝐴 ) ) | |
6 | 4 5 | eqtrid | ⊢ ( ( 𝐴 ∩ 𝐵 ) = ∅ → ( ( 𝑅 ↾ ( 𝐴 ∪ 𝐵 ) ) ∖ ( 𝑅 ↾ 𝐵 ) ) = ( 𝑅 ↾ 𝐴 ) ) |