Metamath Proof Explorer


Theorem disjresundif

Description: Lemma for ressucdifsn2 . (Contributed by Peter Mazsa, 24-Jul-2024)

Ref Expression
Assertion disjresundif ( ( 𝐴𝐵 ) = ∅ → ( ( 𝑅 ↾ ( 𝐴𝐵 ) ) ∖ ( 𝑅𝐵 ) ) = ( 𝑅𝐴 ) )

Proof

Step Hyp Ref Expression
1 resundi ( 𝑅 ↾ ( 𝐴𝐵 ) ) = ( ( 𝑅𝐴 ) ∪ ( 𝑅𝐵 ) )
2 1 difeq1i ( ( 𝑅 ↾ ( 𝐴𝐵 ) ) ∖ ( 𝑅𝐵 ) ) = ( ( ( 𝑅𝐴 ) ∪ ( 𝑅𝐵 ) ) ∖ ( 𝑅𝐵 ) )
3 difun2 ( ( ( 𝑅𝐴 ) ∪ ( 𝑅𝐵 ) ) ∖ ( 𝑅𝐵 ) ) = ( ( 𝑅𝐴 ) ∖ ( 𝑅𝐵 ) )
4 2 3 eqtri ( ( 𝑅 ↾ ( 𝐴𝐵 ) ) ∖ ( 𝑅𝐵 ) ) = ( ( 𝑅𝐴 ) ∖ ( 𝑅𝐵 ) )
5 disjresdif ( ( 𝐴𝐵 ) = ∅ → ( ( 𝑅𝐴 ) ∖ ( 𝑅𝐵 ) ) = ( 𝑅𝐴 ) )
6 4 5 eqtrid ( ( 𝐴𝐵 ) = ∅ → ( ( 𝑅 ↾ ( 𝐴𝐵 ) ) ∖ ( 𝑅𝐵 ) ) = ( 𝑅𝐴 ) )