Metamath Proof Explorer


Theorem disjsn

Description: Intersection with the singleton of a non-member is disjoint. (Contributed by NM, 22-May-1998) (Proof shortened by Andrew Salmon, 29-Jun-2011) (Proof shortened by Wolf Lammen, 30-Sep-2014)

Ref Expression
Assertion disjsn ( ( 𝐴 ∩ { 𝐵 } ) = ∅ ↔ ¬ 𝐵𝐴 )

Proof

Step Hyp Ref Expression
1 disj1 ( ( 𝐴 ∩ { 𝐵 } ) = ∅ ↔ ∀ 𝑥 ( 𝑥𝐴 → ¬ 𝑥 ∈ { 𝐵 } ) )
2 con2b ( ( 𝑥𝐴 → ¬ 𝑥 ∈ { 𝐵 } ) ↔ ( 𝑥 ∈ { 𝐵 } → ¬ 𝑥𝐴 ) )
3 velsn ( 𝑥 ∈ { 𝐵 } ↔ 𝑥 = 𝐵 )
4 3 imbi1i ( ( 𝑥 ∈ { 𝐵 } → ¬ 𝑥𝐴 ) ↔ ( 𝑥 = 𝐵 → ¬ 𝑥𝐴 ) )
5 imnan ( ( 𝑥 = 𝐵 → ¬ 𝑥𝐴 ) ↔ ¬ ( 𝑥 = 𝐵𝑥𝐴 ) )
6 2 4 5 3bitri ( ( 𝑥𝐴 → ¬ 𝑥 ∈ { 𝐵 } ) ↔ ¬ ( 𝑥 = 𝐵𝑥𝐴 ) )
7 6 albii ( ∀ 𝑥 ( 𝑥𝐴 → ¬ 𝑥 ∈ { 𝐵 } ) ↔ ∀ 𝑥 ¬ ( 𝑥 = 𝐵𝑥𝐴 ) )
8 alnex ( ∀ 𝑥 ¬ ( 𝑥 = 𝐵𝑥𝐴 ) ↔ ¬ ∃ 𝑥 ( 𝑥 = 𝐵𝑥𝐴 ) )
9 dfclel ( 𝐵𝐴 ↔ ∃ 𝑥 ( 𝑥 = 𝐵𝑥𝐴 ) )
10 8 9 xchbinxr ( ∀ 𝑥 ¬ ( 𝑥 = 𝐵𝑥𝐴 ) ↔ ¬ 𝐵𝐴 )
11 1 7 10 3bitri ( ( 𝐴 ∩ { 𝐵 } ) = ∅ ↔ ¬ 𝐵𝐴 )