| Step |
Hyp |
Ref |
Expression |
| 1 |
|
disj1 |
⊢ ( ( 𝐴 ∩ { 𝐵 } ) = ∅ ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ { 𝐵 } ) ) |
| 2 |
|
con2b |
⊢ ( ( 𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ { 𝐵 } ) ↔ ( 𝑥 ∈ { 𝐵 } → ¬ 𝑥 ∈ 𝐴 ) ) |
| 3 |
|
velsn |
⊢ ( 𝑥 ∈ { 𝐵 } ↔ 𝑥 = 𝐵 ) |
| 4 |
3
|
imbi1i |
⊢ ( ( 𝑥 ∈ { 𝐵 } → ¬ 𝑥 ∈ 𝐴 ) ↔ ( 𝑥 = 𝐵 → ¬ 𝑥 ∈ 𝐴 ) ) |
| 5 |
|
imnan |
⊢ ( ( 𝑥 = 𝐵 → ¬ 𝑥 ∈ 𝐴 ) ↔ ¬ ( 𝑥 = 𝐵 ∧ 𝑥 ∈ 𝐴 ) ) |
| 6 |
2 4 5
|
3bitri |
⊢ ( ( 𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ { 𝐵 } ) ↔ ¬ ( 𝑥 = 𝐵 ∧ 𝑥 ∈ 𝐴 ) ) |
| 7 |
6
|
albii |
⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ { 𝐵 } ) ↔ ∀ 𝑥 ¬ ( 𝑥 = 𝐵 ∧ 𝑥 ∈ 𝐴 ) ) |
| 8 |
|
alnex |
⊢ ( ∀ 𝑥 ¬ ( 𝑥 = 𝐵 ∧ 𝑥 ∈ 𝐴 ) ↔ ¬ ∃ 𝑥 ( 𝑥 = 𝐵 ∧ 𝑥 ∈ 𝐴 ) ) |
| 9 |
|
dfclel |
⊢ ( 𝐵 ∈ 𝐴 ↔ ∃ 𝑥 ( 𝑥 = 𝐵 ∧ 𝑥 ∈ 𝐴 ) ) |
| 10 |
8 9
|
xchbinxr |
⊢ ( ∀ 𝑥 ¬ ( 𝑥 = 𝐵 ∧ 𝑥 ∈ 𝐴 ) ↔ ¬ 𝐵 ∈ 𝐴 ) |
| 11 |
1 7 10
|
3bitri |
⊢ ( ( 𝐴 ∩ { 𝐵 } ) = ∅ ↔ ¬ 𝐵 ∈ 𝐴 ) |