Step |
Hyp |
Ref |
Expression |
1 |
|
disj1 |
⊢ ( ( 𝐴 ∩ { 𝐵 } ) = ∅ ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ { 𝐵 } ) ) |
2 |
|
con2b |
⊢ ( ( 𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ { 𝐵 } ) ↔ ( 𝑥 ∈ { 𝐵 } → ¬ 𝑥 ∈ 𝐴 ) ) |
3 |
|
velsn |
⊢ ( 𝑥 ∈ { 𝐵 } ↔ 𝑥 = 𝐵 ) |
4 |
3
|
imbi1i |
⊢ ( ( 𝑥 ∈ { 𝐵 } → ¬ 𝑥 ∈ 𝐴 ) ↔ ( 𝑥 = 𝐵 → ¬ 𝑥 ∈ 𝐴 ) ) |
5 |
|
imnan |
⊢ ( ( 𝑥 = 𝐵 → ¬ 𝑥 ∈ 𝐴 ) ↔ ¬ ( 𝑥 = 𝐵 ∧ 𝑥 ∈ 𝐴 ) ) |
6 |
2 4 5
|
3bitri |
⊢ ( ( 𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ { 𝐵 } ) ↔ ¬ ( 𝑥 = 𝐵 ∧ 𝑥 ∈ 𝐴 ) ) |
7 |
6
|
albii |
⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ { 𝐵 } ) ↔ ∀ 𝑥 ¬ ( 𝑥 = 𝐵 ∧ 𝑥 ∈ 𝐴 ) ) |
8 |
|
alnex |
⊢ ( ∀ 𝑥 ¬ ( 𝑥 = 𝐵 ∧ 𝑥 ∈ 𝐴 ) ↔ ¬ ∃ 𝑥 ( 𝑥 = 𝐵 ∧ 𝑥 ∈ 𝐴 ) ) |
9 |
|
dfclel |
⊢ ( 𝐵 ∈ 𝐴 ↔ ∃ 𝑥 ( 𝑥 = 𝐵 ∧ 𝑥 ∈ 𝐴 ) ) |
10 |
8 9
|
xchbinxr |
⊢ ( ∀ 𝑥 ¬ ( 𝑥 = 𝐵 ∧ 𝑥 ∈ 𝐴 ) ↔ ¬ 𝐵 ∈ 𝐴 ) |
11 |
1 7 10
|
3bitri |
⊢ ( ( 𝐴 ∩ { 𝐵 } ) = ∅ ↔ ¬ 𝐵 ∈ 𝐴 ) |