Description: Two distinct singletons are disjoint. (Contributed by NM, 25-May-1998)
Ref | Expression | ||
---|---|---|---|
Assertion | disjsn2 | ⊢ ( 𝐴 ≠ 𝐵 → ( { 𝐴 } ∩ { 𝐵 } ) = ∅ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elsni | ⊢ ( 𝐵 ∈ { 𝐴 } → 𝐵 = 𝐴 ) | |
2 | 1 | eqcomd | ⊢ ( 𝐵 ∈ { 𝐴 } → 𝐴 = 𝐵 ) |
3 | 2 | necon3ai | ⊢ ( 𝐴 ≠ 𝐵 → ¬ 𝐵 ∈ { 𝐴 } ) |
4 | disjsn | ⊢ ( ( { 𝐴 } ∩ { 𝐵 } ) = ∅ ↔ ¬ 𝐵 ∈ { 𝐴 } ) | |
5 | 3 4 | sylibr | ⊢ ( 𝐴 ≠ 𝐵 → ( { 𝐴 } ∩ { 𝐵 } ) = ∅ ) |