Description: A subset of a disjoint collection is disjoint. (Contributed by Mario Carneiro, 14-Nov-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | disjss1 | ⊢ ( 𝐴 ⊆ 𝐵 → ( Disj 𝑥 ∈ 𝐵 𝐶 → Disj 𝑥 ∈ 𝐴 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel | ⊢ ( 𝐴 ⊆ 𝐵 → ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) ) | |
| 2 | 1 | anim1d | ⊢ ( 𝐴 ⊆ 𝐵 → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) → ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) ) ) |
| 3 | 2 | moimdv | ⊢ ( 𝐴 ⊆ 𝐵 → ( ∃* 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) → ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ) ) |
| 4 | 3 | alimdv | ⊢ ( 𝐴 ⊆ 𝐵 → ( ∀ 𝑦 ∃* 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) → ∀ 𝑦 ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ) ) |
| 5 | dfdisj2 | ⊢ ( Disj 𝑥 ∈ 𝐵 𝐶 ↔ ∀ 𝑦 ∃* 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) ) | |
| 6 | dfdisj2 | ⊢ ( Disj 𝑥 ∈ 𝐴 𝐶 ↔ ∀ 𝑦 ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ) | |
| 7 | 4 5 6 | 3imtr4g | ⊢ ( 𝐴 ⊆ 𝐵 → ( Disj 𝑥 ∈ 𝐵 𝐶 → Disj 𝑥 ∈ 𝐴 𝐶 ) ) |