Metamath Proof Explorer


Theorem disjss1f

Description: A subset of a disjoint collection is disjoint. (Contributed by Thierry Arnoux, 6-Apr-2017)

Ref Expression
Hypotheses disjss1f.1 𝑥 𝐴
disjss1f.2 𝑥 𝐵
Assertion disjss1f ( 𝐴𝐵 → ( Disj 𝑥𝐵 𝐶Disj 𝑥𝐴 𝐶 ) )

Proof

Step Hyp Ref Expression
1 disjss1f.1 𝑥 𝐴
2 disjss1f.2 𝑥 𝐵
3 1 2 ssrmof ( 𝐴𝐵 → ( ∃* 𝑥𝐵 𝑦𝐶 → ∃* 𝑥𝐴 𝑦𝐶 ) )
4 3 alimdv ( 𝐴𝐵 → ( ∀ 𝑦 ∃* 𝑥𝐵 𝑦𝐶 → ∀ 𝑦 ∃* 𝑥𝐴 𝑦𝐶 ) )
5 df-disj ( Disj 𝑥𝐵 𝐶 ↔ ∀ 𝑦 ∃* 𝑥𝐵 𝑦𝐶 )
6 df-disj ( Disj 𝑥𝐴 𝐶 ↔ ∀ 𝑦 ∃* 𝑥𝐴 𝑦𝐶 )
7 4 5 6 3imtr4g ( 𝐴𝐵 → ( Disj 𝑥𝐵 𝐶Disj 𝑥𝐴 𝐶 ) )