Step |
Hyp |
Ref |
Expression |
1 |
|
ssel |
⊢ ( 𝐵 ⊆ 𝐶 → ( 𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶 ) ) |
2 |
1
|
ralimi |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → ∀ 𝑥 ∈ 𝐴 ( 𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶 ) ) |
3 |
|
rmoim |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶 ) → ( ∃* 𝑥 ∈ 𝐴 𝑦 ∈ 𝐶 → ∃* 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) ) |
4 |
2 3
|
syl |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → ( ∃* 𝑥 ∈ 𝐴 𝑦 ∈ 𝐶 → ∃* 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) ) |
5 |
4
|
alimdv |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → ( ∀ 𝑦 ∃* 𝑥 ∈ 𝐴 𝑦 ∈ 𝐶 → ∀ 𝑦 ∃* 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) ) |
6 |
|
df-disj |
⊢ ( Disj 𝑥 ∈ 𝐴 𝐶 ↔ ∀ 𝑦 ∃* 𝑥 ∈ 𝐴 𝑦 ∈ 𝐶 ) |
7 |
|
df-disj |
⊢ ( Disj 𝑥 ∈ 𝐴 𝐵 ↔ ∀ 𝑦 ∃* 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) |
8 |
5 6 7
|
3imtr4g |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → ( Disj 𝑥 ∈ 𝐴 𝐶 → Disj 𝑥 ∈ 𝐴 𝐵 ) ) |