| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ssel | ⊢ ( 𝐵  ⊆  𝐶  →  ( 𝑦  ∈  𝐵  →  𝑦  ∈  𝐶 ) ) | 
						
							| 2 | 1 | ralimi | ⊢ ( ∀ 𝑥  ∈  𝐴 𝐵  ⊆  𝐶  →  ∀ 𝑥  ∈  𝐴 ( 𝑦  ∈  𝐵  →  𝑦  ∈  𝐶 ) ) | 
						
							| 3 |  | rmoim | ⊢ ( ∀ 𝑥  ∈  𝐴 ( 𝑦  ∈  𝐵  →  𝑦  ∈  𝐶 )  →  ( ∃* 𝑥  ∈  𝐴 𝑦  ∈  𝐶  →  ∃* 𝑥  ∈  𝐴 𝑦  ∈  𝐵 ) ) | 
						
							| 4 | 2 3 | syl | ⊢ ( ∀ 𝑥  ∈  𝐴 𝐵  ⊆  𝐶  →  ( ∃* 𝑥  ∈  𝐴 𝑦  ∈  𝐶  →  ∃* 𝑥  ∈  𝐴 𝑦  ∈  𝐵 ) ) | 
						
							| 5 | 4 | alimdv | ⊢ ( ∀ 𝑥  ∈  𝐴 𝐵  ⊆  𝐶  →  ( ∀ 𝑦 ∃* 𝑥  ∈  𝐴 𝑦  ∈  𝐶  →  ∀ 𝑦 ∃* 𝑥  ∈  𝐴 𝑦  ∈  𝐵 ) ) | 
						
							| 6 |  | df-disj | ⊢ ( Disj  𝑥  ∈  𝐴 𝐶  ↔  ∀ 𝑦 ∃* 𝑥  ∈  𝐴 𝑦  ∈  𝐶 ) | 
						
							| 7 |  | df-disj | ⊢ ( Disj  𝑥  ∈  𝐴 𝐵  ↔  ∀ 𝑦 ∃* 𝑥  ∈  𝐴 𝑦  ∈  𝐵 ) | 
						
							| 8 | 5 6 7 | 3imtr4g | ⊢ ( ∀ 𝑥  ∈  𝐴 𝐵  ⊆  𝐶  →  ( Disj  𝑥  ∈  𝐴 𝐶  →  Disj  𝑥  ∈  𝐴 𝐵 ) ) |