Metamath Proof Explorer


Theorem disjss2

Description: If each element of a collection is contained in a disjoint collection, the original collection is also disjoint. (Contributed by Mario Carneiro, 14-Nov-2016)

Ref Expression
Assertion disjss2 ( ∀ 𝑥𝐴 𝐵𝐶 → ( Disj 𝑥𝐴 𝐶Disj 𝑥𝐴 𝐵 ) )

Proof

Step Hyp Ref Expression
1 ssel ( 𝐵𝐶 → ( 𝑦𝐵𝑦𝐶 ) )
2 1 ralimi ( ∀ 𝑥𝐴 𝐵𝐶 → ∀ 𝑥𝐴 ( 𝑦𝐵𝑦𝐶 ) )
3 rmoim ( ∀ 𝑥𝐴 ( 𝑦𝐵𝑦𝐶 ) → ( ∃* 𝑥𝐴 𝑦𝐶 → ∃* 𝑥𝐴 𝑦𝐵 ) )
4 2 3 syl ( ∀ 𝑥𝐴 𝐵𝐶 → ( ∃* 𝑥𝐴 𝑦𝐶 → ∃* 𝑥𝐴 𝑦𝐵 ) )
5 4 alimdv ( ∀ 𝑥𝐴 𝐵𝐶 → ( ∀ 𝑦 ∃* 𝑥𝐴 𝑦𝐶 → ∀ 𝑦 ∃* 𝑥𝐴 𝑦𝐵 ) )
6 df-disj ( Disj 𝑥𝐴 𝐶 ↔ ∀ 𝑦 ∃* 𝑥𝐴 𝑦𝐶 )
7 df-disj ( Disj 𝑥𝐴 𝐵 ↔ ∀ 𝑦 ∃* 𝑥𝐴 𝑦𝐵 )
8 5 6 7 3imtr4g ( ∀ 𝑥𝐴 𝐵𝐶 → ( Disj 𝑥𝐴 𝐶Disj 𝑥𝐴 𝐵 ) )