| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-ral | ⊢ ( ∀ 𝑥  ∈  ( 𝐵  ∖  𝐴 ) 𝐶  =  ∅  ↔  ∀ 𝑥 ( 𝑥  ∈  ( 𝐵  ∖  𝐴 )  →  𝐶  =  ∅ ) ) | 
						
							| 2 |  | simprr | ⊢ ( ( ( 𝑥  ∈  ( 𝐵  ∖  𝐴 )  →  𝐶  =  ∅ )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐶 ) )  →  𝑦  ∈  𝐶 ) | 
						
							| 3 |  | n0i | ⊢ ( 𝑦  ∈  𝐶  →  ¬  𝐶  =  ∅ ) | 
						
							| 4 | 2 3 | syl | ⊢ ( ( ( 𝑥  ∈  ( 𝐵  ∖  𝐴 )  →  𝐶  =  ∅ )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐶 ) )  →  ¬  𝐶  =  ∅ ) | 
						
							| 5 |  | simpl | ⊢ ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐶 )  →  𝑥  ∈  𝐵 ) | 
						
							| 6 | 5 | adantl | ⊢ ( ( ( 𝑥  ∈  ( 𝐵  ∖  𝐴 )  →  𝐶  =  ∅ )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐶 ) )  →  𝑥  ∈  𝐵 ) | 
						
							| 7 |  | eldif | ⊢ ( 𝑥  ∈  ( 𝐵  ∖  𝐴 )  ↔  ( 𝑥  ∈  𝐵  ∧  ¬  𝑥  ∈  𝐴 ) ) | 
						
							| 8 |  | simpl | ⊢ ( ( ( 𝑥  ∈  ( 𝐵  ∖  𝐴 )  →  𝐶  =  ∅ )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐶 ) )  →  ( 𝑥  ∈  ( 𝐵  ∖  𝐴 )  →  𝐶  =  ∅ ) ) | 
						
							| 9 | 7 8 | biimtrrid | ⊢ ( ( ( 𝑥  ∈  ( 𝐵  ∖  𝐴 )  →  𝐶  =  ∅ )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐶 ) )  →  ( ( 𝑥  ∈  𝐵  ∧  ¬  𝑥  ∈  𝐴 )  →  𝐶  =  ∅ ) ) | 
						
							| 10 | 6 9 | mpand | ⊢ ( ( ( 𝑥  ∈  ( 𝐵  ∖  𝐴 )  →  𝐶  =  ∅ )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐶 ) )  →  ( ¬  𝑥  ∈  𝐴  →  𝐶  =  ∅ ) ) | 
						
							| 11 | 4 10 | mt3d | ⊢ ( ( ( 𝑥  ∈  ( 𝐵  ∖  𝐴 )  →  𝐶  =  ∅ )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐶 ) )  →  𝑥  ∈  𝐴 ) | 
						
							| 12 | 11 2 | jca | ⊢ ( ( ( 𝑥  ∈  ( 𝐵  ∖  𝐴 )  →  𝐶  =  ∅ )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐶 ) )  →  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐶 ) ) | 
						
							| 13 | 12 | ex | ⊢ ( ( 𝑥  ∈  ( 𝐵  ∖  𝐴 )  →  𝐶  =  ∅ )  →  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐶 )  →  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐶 ) ) ) | 
						
							| 14 | 13 | alimi | ⊢ ( ∀ 𝑥 ( 𝑥  ∈  ( 𝐵  ∖  𝐴 )  →  𝐶  =  ∅ )  →  ∀ 𝑥 ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐶 )  →  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐶 ) ) ) | 
						
							| 15 | 1 14 | sylbi | ⊢ ( ∀ 𝑥  ∈  ( 𝐵  ∖  𝐴 ) 𝐶  =  ∅  →  ∀ 𝑥 ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐶 )  →  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐶 ) ) ) | 
						
							| 16 |  | moim | ⊢ ( ∀ 𝑥 ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐶 )  →  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐶 ) )  →  ( ∃* 𝑥 ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐶 )  →  ∃* 𝑥 ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐶 ) ) ) | 
						
							| 17 | 15 16 | syl | ⊢ ( ∀ 𝑥  ∈  ( 𝐵  ∖  𝐴 ) 𝐶  =  ∅  →  ( ∃* 𝑥 ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐶 )  →  ∃* 𝑥 ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐶 ) ) ) | 
						
							| 18 | 17 | alimdv | ⊢ ( ∀ 𝑥  ∈  ( 𝐵  ∖  𝐴 ) 𝐶  =  ∅  →  ( ∀ 𝑦 ∃* 𝑥 ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐶 )  →  ∀ 𝑦 ∃* 𝑥 ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐶 ) ) ) | 
						
							| 19 |  | dfdisj2 | ⊢ ( Disj  𝑥  ∈  𝐴 𝐶  ↔  ∀ 𝑦 ∃* 𝑥 ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐶 ) ) | 
						
							| 20 |  | dfdisj2 | ⊢ ( Disj  𝑥  ∈  𝐵 𝐶  ↔  ∀ 𝑦 ∃* 𝑥 ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐶 ) ) | 
						
							| 21 | 18 19 20 | 3imtr4g | ⊢ ( ∀ 𝑥  ∈  ( 𝐵  ∖  𝐴 ) 𝐶  =  ∅  →  ( Disj  𝑥  ∈  𝐴 𝐶  →  Disj  𝑥  ∈  𝐵 𝐶 ) ) | 
						
							| 22 | 21 | adantl | ⊢ ( ( 𝐴  ⊆  𝐵  ∧  ∀ 𝑥  ∈  ( 𝐵  ∖  𝐴 ) 𝐶  =  ∅ )  →  ( Disj  𝑥  ∈  𝐴 𝐶  →  Disj  𝑥  ∈  𝐵 𝐶 ) ) | 
						
							| 23 |  | disjss1 | ⊢ ( 𝐴  ⊆  𝐵  →  ( Disj  𝑥  ∈  𝐵 𝐶  →  Disj  𝑥  ∈  𝐴 𝐶 ) ) | 
						
							| 24 | 23 | adantr | ⊢ ( ( 𝐴  ⊆  𝐵  ∧  ∀ 𝑥  ∈  ( 𝐵  ∖  𝐴 ) 𝐶  =  ∅ )  →  ( Disj  𝑥  ∈  𝐵 𝐶  →  Disj  𝑥  ∈  𝐴 𝐶 ) ) | 
						
							| 25 | 22 24 | impbid | ⊢ ( ( 𝐴  ⊆  𝐵  ∧  ∀ 𝑥  ∈  ( 𝐵  ∖  𝐴 ) 𝐶  =  ∅ )  →  ( Disj  𝑥  ∈  𝐴 𝐶  ↔  Disj  𝑥  ∈  𝐵 𝐶 ) ) |