Step |
Hyp |
Ref |
Expression |
1 |
|
df-ral |
⊢ ( ∀ 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) 𝐶 = ∅ ↔ ∀ 𝑥 ( 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) → 𝐶 = ∅ ) ) |
2 |
|
simprr |
⊢ ( ( ( 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) → 𝐶 = ∅ ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) ) → 𝑦 ∈ 𝐶 ) |
3 |
|
n0i |
⊢ ( 𝑦 ∈ 𝐶 → ¬ 𝐶 = ∅ ) |
4 |
2 3
|
syl |
⊢ ( ( ( 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) → 𝐶 = ∅ ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) ) → ¬ 𝐶 = ∅ ) |
5 |
|
simpl |
⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) → 𝑥 ∈ 𝐵 ) |
6 |
5
|
adantl |
⊢ ( ( ( 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) → 𝐶 = ∅ ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) ) → 𝑥 ∈ 𝐵 ) |
7 |
|
eldif |
⊢ ( 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) ↔ ( 𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐴 ) ) |
8 |
|
simpl |
⊢ ( ( ( 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) → 𝐶 = ∅ ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) ) → ( 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) → 𝐶 = ∅ ) ) |
9 |
7 8
|
syl5bir |
⊢ ( ( ( 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) → 𝐶 = ∅ ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) ) → ( ( 𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐴 ) → 𝐶 = ∅ ) ) |
10 |
6 9
|
mpand |
⊢ ( ( ( 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) → 𝐶 = ∅ ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) ) → ( ¬ 𝑥 ∈ 𝐴 → 𝐶 = ∅ ) ) |
11 |
4 10
|
mt3d |
⊢ ( ( ( 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) → 𝐶 = ∅ ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) ) → 𝑥 ∈ 𝐴 ) |
12 |
11 2
|
jca |
⊢ ( ( ( 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) → 𝐶 = ∅ ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) ) → ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ) |
13 |
12
|
ex |
⊢ ( ( 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) → 𝐶 = ∅ ) → ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) → ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ) ) |
14 |
13
|
alimi |
⊢ ( ∀ 𝑥 ( 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) → 𝐶 = ∅ ) → ∀ 𝑥 ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) → ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ) ) |
15 |
1 14
|
sylbi |
⊢ ( ∀ 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) 𝐶 = ∅ → ∀ 𝑥 ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) → ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ) ) |
16 |
|
moim |
⊢ ( ∀ 𝑥 ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) → ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ) → ( ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) → ∃* 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) ) ) |
17 |
15 16
|
syl |
⊢ ( ∀ 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) 𝐶 = ∅ → ( ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) → ∃* 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) ) ) |
18 |
17
|
alimdv |
⊢ ( ∀ 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) 𝐶 = ∅ → ( ∀ 𝑦 ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) → ∀ 𝑦 ∃* 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) ) ) |
19 |
|
dfdisj2 |
⊢ ( Disj 𝑥 ∈ 𝐴 𝐶 ↔ ∀ 𝑦 ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ) |
20 |
|
dfdisj2 |
⊢ ( Disj 𝑥 ∈ 𝐵 𝐶 ↔ ∀ 𝑦 ∃* 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) ) |
21 |
18 19 20
|
3imtr4g |
⊢ ( ∀ 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) 𝐶 = ∅ → ( Disj 𝑥 ∈ 𝐴 𝐶 → Disj 𝑥 ∈ 𝐵 𝐶 ) ) |
22 |
21
|
adantl |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ ∀ 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) 𝐶 = ∅ ) → ( Disj 𝑥 ∈ 𝐴 𝐶 → Disj 𝑥 ∈ 𝐵 𝐶 ) ) |
23 |
|
disjss1 |
⊢ ( 𝐴 ⊆ 𝐵 → ( Disj 𝑥 ∈ 𝐵 𝐶 → Disj 𝑥 ∈ 𝐴 𝐶 ) ) |
24 |
23
|
adantr |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ ∀ 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) 𝐶 = ∅ ) → ( Disj 𝑥 ∈ 𝐵 𝐶 → Disj 𝑥 ∈ 𝐴 𝐶 ) ) |
25 |
22 24
|
impbid |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ ∀ 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) 𝐶 = ∅ ) → ( Disj 𝑥 ∈ 𝐴 𝐶 ↔ Disj 𝑥 ∈ 𝐵 𝐶 ) ) |