Metamath Proof Explorer


Theorem disjssun

Description: Subset relation for disjoint classes. (Contributed by NM, 25-Oct-2005) (Proof shortened by Andrew Salmon, 26-Jun-2011)

Ref Expression
Assertion disjssun ( ( 𝐴𝐵 ) = ∅ → ( 𝐴 ⊆ ( 𝐵𝐶 ) ↔ 𝐴𝐶 ) )

Proof

Step Hyp Ref Expression
1 uneq2 ( ( 𝐴𝐵 ) = ∅ → ( ( 𝐴𝐶 ) ∪ ( 𝐴𝐵 ) ) = ( ( 𝐴𝐶 ) ∪ ∅ ) )
2 indi ( 𝐴 ∩ ( 𝐵𝐶 ) ) = ( ( 𝐴𝐵 ) ∪ ( 𝐴𝐶 ) )
3 2 equncomi ( 𝐴 ∩ ( 𝐵𝐶 ) ) = ( ( 𝐴𝐶 ) ∪ ( 𝐴𝐵 ) )
4 un0 ( ( 𝐴𝐶 ) ∪ ∅ ) = ( 𝐴𝐶 )
5 4 eqcomi ( 𝐴𝐶 ) = ( ( 𝐴𝐶 ) ∪ ∅ )
6 1 3 5 3eqtr4g ( ( 𝐴𝐵 ) = ∅ → ( 𝐴 ∩ ( 𝐵𝐶 ) ) = ( 𝐴𝐶 ) )
7 6 eqeq1d ( ( 𝐴𝐵 ) = ∅ → ( ( 𝐴 ∩ ( 𝐵𝐶 ) ) = 𝐴 ↔ ( 𝐴𝐶 ) = 𝐴 ) )
8 df-ss ( 𝐴 ⊆ ( 𝐵𝐶 ) ↔ ( 𝐴 ∩ ( 𝐵𝐶 ) ) = 𝐴 )
9 df-ss ( 𝐴𝐶 ↔ ( 𝐴𝐶 ) = 𝐴 )
10 7 8 9 3bitr4g ( ( 𝐴𝐵 ) = ∅ → ( 𝐴 ⊆ ( 𝐵𝐶 ) ↔ 𝐴𝐶 ) )