| Step |
Hyp |
Ref |
Expression |
| 1 |
|
uneq2 |
⊢ ( ( 𝐴 ∩ 𝐵 ) = ∅ → ( ( 𝐴 ∩ 𝐶 ) ∪ ( 𝐴 ∩ 𝐵 ) ) = ( ( 𝐴 ∩ 𝐶 ) ∪ ∅ ) ) |
| 2 |
|
indi |
⊢ ( 𝐴 ∩ ( 𝐵 ∪ 𝐶 ) ) = ( ( 𝐴 ∩ 𝐵 ) ∪ ( 𝐴 ∩ 𝐶 ) ) |
| 3 |
2
|
equncomi |
⊢ ( 𝐴 ∩ ( 𝐵 ∪ 𝐶 ) ) = ( ( 𝐴 ∩ 𝐶 ) ∪ ( 𝐴 ∩ 𝐵 ) ) |
| 4 |
|
un0 |
⊢ ( ( 𝐴 ∩ 𝐶 ) ∪ ∅ ) = ( 𝐴 ∩ 𝐶 ) |
| 5 |
4
|
eqcomi |
⊢ ( 𝐴 ∩ 𝐶 ) = ( ( 𝐴 ∩ 𝐶 ) ∪ ∅ ) |
| 6 |
1 3 5
|
3eqtr4g |
⊢ ( ( 𝐴 ∩ 𝐵 ) = ∅ → ( 𝐴 ∩ ( 𝐵 ∪ 𝐶 ) ) = ( 𝐴 ∩ 𝐶 ) ) |
| 7 |
6
|
eqeq1d |
⊢ ( ( 𝐴 ∩ 𝐵 ) = ∅ → ( ( 𝐴 ∩ ( 𝐵 ∪ 𝐶 ) ) = 𝐴 ↔ ( 𝐴 ∩ 𝐶 ) = 𝐴 ) ) |
| 8 |
|
dfss2 |
⊢ ( 𝐴 ⊆ ( 𝐵 ∪ 𝐶 ) ↔ ( 𝐴 ∩ ( 𝐵 ∪ 𝐶 ) ) = 𝐴 ) |
| 9 |
|
dfss2 |
⊢ ( 𝐴 ⊆ 𝐶 ↔ ( 𝐴 ∩ 𝐶 ) = 𝐴 ) |
| 10 |
7 8 9
|
3bitr4g |
⊢ ( ( 𝐴 ∩ 𝐵 ) = ∅ → ( 𝐴 ⊆ ( 𝐵 ∪ 𝐶 ) ↔ 𝐴 ⊆ 𝐶 ) ) |