Step |
Hyp |
Ref |
Expression |
1 |
|
disjsuc2 |
⊢ ( 𝐴 ∈ 𝑉 → ( ∀ 𝑢 ∈ ( 𝐴 ∪ { 𝐴 } ) ∀ 𝑣 ∈ ( 𝐴 ∪ { 𝐴 } ) ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] ( 𝑅 ⋉ ◡ E ) ∩ [ 𝑣 ] ( 𝑅 ⋉ ◡ E ) ) = ∅ ) ↔ ( ∀ 𝑢 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] ( 𝑅 ⋉ ◡ E ) ∩ [ 𝑣 ] ( 𝑅 ⋉ ◡ E ) ) = ∅ ) ∧ ∀ 𝑢 ∈ 𝐴 ( ( 𝑢 ∩ 𝐴 ) = ∅ ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝐴 ] 𝑅 ) = ∅ ) ) ) ) |
2 |
|
df-suc |
⊢ suc 𝐴 = ( 𝐴 ∪ { 𝐴 } ) |
3 |
2
|
reseq2i |
⊢ ( ◡ E ↾ suc 𝐴 ) = ( ◡ E ↾ ( 𝐴 ∪ { 𝐴 } ) ) |
4 |
3
|
xrneq2i |
⊢ ( 𝑅 ⋉ ( ◡ E ↾ suc 𝐴 ) ) = ( 𝑅 ⋉ ( ◡ E ↾ ( 𝐴 ∪ { 𝐴 } ) ) ) |
5 |
4
|
disjeqi |
⊢ ( Disj ( 𝑅 ⋉ ( ◡ E ↾ suc 𝐴 ) ) ↔ Disj ( 𝑅 ⋉ ( ◡ E ↾ ( 𝐴 ∪ { 𝐴 } ) ) ) ) |
6 |
|
disjxrnres5 |
⊢ ( Disj ( 𝑅 ⋉ ( ◡ E ↾ ( 𝐴 ∪ { 𝐴 } ) ) ) ↔ ∀ 𝑢 ∈ ( 𝐴 ∪ { 𝐴 } ) ∀ 𝑣 ∈ ( 𝐴 ∪ { 𝐴 } ) ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] ( 𝑅 ⋉ ◡ E ) ∩ [ 𝑣 ] ( 𝑅 ⋉ ◡ E ) ) = ∅ ) ) |
7 |
5 6
|
bitri |
⊢ ( Disj ( 𝑅 ⋉ ( ◡ E ↾ suc 𝐴 ) ) ↔ ∀ 𝑢 ∈ ( 𝐴 ∪ { 𝐴 } ) ∀ 𝑣 ∈ ( 𝐴 ∪ { 𝐴 } ) ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] ( 𝑅 ⋉ ◡ E ) ∩ [ 𝑣 ] ( 𝑅 ⋉ ◡ E ) ) = ∅ ) ) |
8 |
|
disjxrnres5 |
⊢ ( Disj ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) ↔ ∀ 𝑢 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] ( 𝑅 ⋉ ◡ E ) ∩ [ 𝑣 ] ( 𝑅 ⋉ ◡ E ) ) = ∅ ) ) |
9 |
8
|
anbi1i |
⊢ ( ( Disj ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) ∧ ∀ 𝑢 ∈ 𝐴 ( ( 𝑢 ∩ 𝐴 ) = ∅ ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝐴 ] 𝑅 ) = ∅ ) ) ↔ ( ∀ 𝑢 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] ( 𝑅 ⋉ ◡ E ) ∩ [ 𝑣 ] ( 𝑅 ⋉ ◡ E ) ) = ∅ ) ∧ ∀ 𝑢 ∈ 𝐴 ( ( 𝑢 ∩ 𝐴 ) = ∅ ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝐴 ] 𝑅 ) = ∅ ) ) ) |
10 |
1 7 9
|
3bitr4g |
⊢ ( 𝐴 ∈ 𝑉 → ( Disj ( 𝑅 ⋉ ( ◡ E ↾ suc 𝐴 ) ) ↔ ( Disj ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) ∧ ∀ 𝑢 ∈ 𝐴 ( ( 𝑢 ∩ 𝐴 ) = ∅ ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝐴 ] 𝑅 ) = ∅ ) ) ) ) |