Metamath Proof Explorer


Theorem disjsuc

Description: Disjoint range Cartesian product, special case. (Contributed by Peter Mazsa, 25-Aug-2023)

Ref Expression
Assertion disjsuc ( 𝐴𝑉 → ( Disj ( 𝑅 ⋉ ( E ↾ suc 𝐴 ) ) ↔ ( Disj ( 𝑅 ⋉ ( E ↾ 𝐴 ) ) ∧ ∀ 𝑢𝐴 ( ( 𝑢𝐴 ) = ∅ ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝐴 ] 𝑅 ) = ∅ ) ) ) )

Proof

Step Hyp Ref Expression
1 disjsuc2 ( 𝐴𝑉 → ( ∀ 𝑢 ∈ ( 𝐴 ∪ { 𝐴 } ) ∀ 𝑣 ∈ ( 𝐴 ∪ { 𝐴 } ) ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] ( 𝑅 E ) ∩ [ 𝑣 ] ( 𝑅 E ) ) = ∅ ) ↔ ( ∀ 𝑢𝐴𝑣𝐴 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] ( 𝑅 E ) ∩ [ 𝑣 ] ( 𝑅 E ) ) = ∅ ) ∧ ∀ 𝑢𝐴 ( ( 𝑢𝐴 ) = ∅ ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝐴 ] 𝑅 ) = ∅ ) ) ) )
2 df-suc suc 𝐴 = ( 𝐴 ∪ { 𝐴 } )
3 2 reseq2i ( E ↾ suc 𝐴 ) = ( E ↾ ( 𝐴 ∪ { 𝐴 } ) )
4 3 xrneq2i ( 𝑅 ⋉ ( E ↾ suc 𝐴 ) ) = ( 𝑅 ⋉ ( E ↾ ( 𝐴 ∪ { 𝐴 } ) ) )
5 4 disjeqi ( Disj ( 𝑅 ⋉ ( E ↾ suc 𝐴 ) ) ↔ Disj ( 𝑅 ⋉ ( E ↾ ( 𝐴 ∪ { 𝐴 } ) ) ) )
6 disjxrnres5 ( Disj ( 𝑅 ⋉ ( E ↾ ( 𝐴 ∪ { 𝐴 } ) ) ) ↔ ∀ 𝑢 ∈ ( 𝐴 ∪ { 𝐴 } ) ∀ 𝑣 ∈ ( 𝐴 ∪ { 𝐴 } ) ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] ( 𝑅 E ) ∩ [ 𝑣 ] ( 𝑅 E ) ) = ∅ ) )
7 5 6 bitri ( Disj ( 𝑅 ⋉ ( E ↾ suc 𝐴 ) ) ↔ ∀ 𝑢 ∈ ( 𝐴 ∪ { 𝐴 } ) ∀ 𝑣 ∈ ( 𝐴 ∪ { 𝐴 } ) ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] ( 𝑅 E ) ∩ [ 𝑣 ] ( 𝑅 E ) ) = ∅ ) )
8 disjxrnres5 ( Disj ( 𝑅 ⋉ ( E ↾ 𝐴 ) ) ↔ ∀ 𝑢𝐴𝑣𝐴 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] ( 𝑅 E ) ∩ [ 𝑣 ] ( 𝑅 E ) ) = ∅ ) )
9 8 anbi1i ( ( Disj ( 𝑅 ⋉ ( E ↾ 𝐴 ) ) ∧ ∀ 𝑢𝐴 ( ( 𝑢𝐴 ) = ∅ ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝐴 ] 𝑅 ) = ∅ ) ) ↔ ( ∀ 𝑢𝐴𝑣𝐴 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] ( 𝑅 E ) ∩ [ 𝑣 ] ( 𝑅 E ) ) = ∅ ) ∧ ∀ 𝑢𝐴 ( ( 𝑢𝐴 ) = ∅ ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝐴 ] 𝑅 ) = ∅ ) ) )
10 1 7 9 3bitr4g ( 𝐴𝑉 → ( Disj ( 𝑅 ⋉ ( E ↾ suc 𝐴 ) ) ↔ ( Disj ( 𝑅 ⋉ ( E ↾ 𝐴 ) ) ∧ ∀ 𝑢𝐴 ( ( 𝑢𝐴 ) = ∅ ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝐴 ] 𝑅 ) = ∅ ) ) ) )