Metamath Proof Explorer


Theorem disjsuc2

Description: Double restricted quantification over the union of a set and its singleton. (Contributed by Peter Mazsa, 22-Aug-2023)

Ref Expression
Assertion disjsuc2 ( 𝐴𝑉 → ( ∀ 𝑢 ∈ ( 𝐴 ∪ { 𝐴 } ) ∀ 𝑣 ∈ ( 𝐴 ∪ { 𝐴 } ) ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] ( 𝑅 E ) ∩ [ 𝑣 ] ( 𝑅 E ) ) = ∅ ) ↔ ( ∀ 𝑢𝐴𝑣𝐴 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] ( 𝑅 E ) ∩ [ 𝑣 ] ( 𝑅 E ) ) = ∅ ) ∧ ∀ 𝑢𝐴 ( ( 𝑢𝐴 ) = ∅ ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝐴 ] 𝑅 ) = ∅ ) ) ) )

Proof

Step Hyp Ref Expression
1 disjressuc2 ( 𝐴𝑉 → ( ∀ 𝑢 ∈ ( 𝐴 ∪ { 𝐴 } ) ∀ 𝑣 ∈ ( 𝐴 ∪ { 𝐴 } ) ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] ( 𝑅 E ) ∩ [ 𝑣 ] ( 𝑅 E ) ) = ∅ ) ↔ ( ∀ 𝑢𝐴𝑣𝐴 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] ( 𝑅 E ) ∩ [ 𝑣 ] ( 𝑅 E ) ) = ∅ ) ∧ ∀ 𝑢𝐴 ( [ 𝑢 ] ( 𝑅 E ) ∩ [ 𝐴 ] ( 𝑅 E ) ) = ∅ ) ) )
2 disjecxrncnvep ( ( 𝑢 ∈ V ∧ 𝐴𝑉 ) → ( ( [ 𝑢 ] ( 𝑅 E ) ∩ [ 𝐴 ] ( 𝑅 E ) ) = ∅ ↔ ( ( 𝑢𝐴 ) = ∅ ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝐴 ] 𝑅 ) = ∅ ) ) )
3 2 el2v1 ( 𝐴𝑉 → ( ( [ 𝑢 ] ( 𝑅 E ) ∩ [ 𝐴 ] ( 𝑅 E ) ) = ∅ ↔ ( ( 𝑢𝐴 ) = ∅ ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝐴 ] 𝑅 ) = ∅ ) ) )
4 3 ralbidv ( 𝐴𝑉 → ( ∀ 𝑢𝐴 ( [ 𝑢 ] ( 𝑅 E ) ∩ [ 𝐴 ] ( 𝑅 E ) ) = ∅ ↔ ∀ 𝑢𝐴 ( ( 𝑢𝐴 ) = ∅ ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝐴 ] 𝑅 ) = ∅ ) ) )
5 4 anbi2d ( 𝐴𝑉 → ( ( ∀ 𝑢𝐴𝑣𝐴 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] ( 𝑅 E ) ∩ [ 𝑣 ] ( 𝑅 E ) ) = ∅ ) ∧ ∀ 𝑢𝐴 ( [ 𝑢 ] ( 𝑅 E ) ∩ [ 𝐴 ] ( 𝑅 E ) ) = ∅ ) ↔ ( ∀ 𝑢𝐴𝑣𝐴 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] ( 𝑅 E ) ∩ [ 𝑣 ] ( 𝑅 E ) ) = ∅ ) ∧ ∀ 𝑢𝐴 ( ( 𝑢𝐴 ) = ∅ ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝐴 ] 𝑅 ) = ∅ ) ) ) )
6 1 5 bitrd ( 𝐴𝑉 → ( ∀ 𝑢 ∈ ( 𝐴 ∪ { 𝐴 } ) ∀ 𝑣 ∈ ( 𝐴 ∪ { 𝐴 } ) ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] ( 𝑅 E ) ∩ [ 𝑣 ] ( 𝑅 E ) ) = ∅ ) ↔ ( ∀ 𝑢𝐴𝑣𝐴 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] ( 𝑅 E ) ∩ [ 𝑣 ] ( 𝑅 E ) ) = ∅ ) ∧ ∀ 𝑢𝐴 ( ( 𝑢𝐴 ) = ∅ ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝐴 ] 𝑅 ) = ∅ ) ) ) )