Step |
Hyp |
Ref |
Expression |
1 |
|
disjressuc2 |
⊢ ( 𝐴 ∈ 𝑉 → ( ∀ 𝑢 ∈ ( 𝐴 ∪ { 𝐴 } ) ∀ 𝑣 ∈ ( 𝐴 ∪ { 𝐴 } ) ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] ( 𝑅 ⋉ ◡ E ) ∩ [ 𝑣 ] ( 𝑅 ⋉ ◡ E ) ) = ∅ ) ↔ ( ∀ 𝑢 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] ( 𝑅 ⋉ ◡ E ) ∩ [ 𝑣 ] ( 𝑅 ⋉ ◡ E ) ) = ∅ ) ∧ ∀ 𝑢 ∈ 𝐴 ( [ 𝑢 ] ( 𝑅 ⋉ ◡ E ) ∩ [ 𝐴 ] ( 𝑅 ⋉ ◡ E ) ) = ∅ ) ) ) |
2 |
|
disjecxrncnvep |
⊢ ( ( 𝑢 ∈ V ∧ 𝐴 ∈ 𝑉 ) → ( ( [ 𝑢 ] ( 𝑅 ⋉ ◡ E ) ∩ [ 𝐴 ] ( 𝑅 ⋉ ◡ E ) ) = ∅ ↔ ( ( 𝑢 ∩ 𝐴 ) = ∅ ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝐴 ] 𝑅 ) = ∅ ) ) ) |
3 |
2
|
el2v1 |
⊢ ( 𝐴 ∈ 𝑉 → ( ( [ 𝑢 ] ( 𝑅 ⋉ ◡ E ) ∩ [ 𝐴 ] ( 𝑅 ⋉ ◡ E ) ) = ∅ ↔ ( ( 𝑢 ∩ 𝐴 ) = ∅ ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝐴 ] 𝑅 ) = ∅ ) ) ) |
4 |
3
|
ralbidv |
⊢ ( 𝐴 ∈ 𝑉 → ( ∀ 𝑢 ∈ 𝐴 ( [ 𝑢 ] ( 𝑅 ⋉ ◡ E ) ∩ [ 𝐴 ] ( 𝑅 ⋉ ◡ E ) ) = ∅ ↔ ∀ 𝑢 ∈ 𝐴 ( ( 𝑢 ∩ 𝐴 ) = ∅ ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝐴 ] 𝑅 ) = ∅ ) ) ) |
5 |
4
|
anbi2d |
⊢ ( 𝐴 ∈ 𝑉 → ( ( ∀ 𝑢 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] ( 𝑅 ⋉ ◡ E ) ∩ [ 𝑣 ] ( 𝑅 ⋉ ◡ E ) ) = ∅ ) ∧ ∀ 𝑢 ∈ 𝐴 ( [ 𝑢 ] ( 𝑅 ⋉ ◡ E ) ∩ [ 𝐴 ] ( 𝑅 ⋉ ◡ E ) ) = ∅ ) ↔ ( ∀ 𝑢 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] ( 𝑅 ⋉ ◡ E ) ∩ [ 𝑣 ] ( 𝑅 ⋉ ◡ E ) ) = ∅ ) ∧ ∀ 𝑢 ∈ 𝐴 ( ( 𝑢 ∩ 𝐴 ) = ∅ ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝐴 ] 𝑅 ) = ∅ ) ) ) ) |
6 |
1 5
|
bitrd |
⊢ ( 𝐴 ∈ 𝑉 → ( ∀ 𝑢 ∈ ( 𝐴 ∪ { 𝐴 } ) ∀ 𝑣 ∈ ( 𝐴 ∪ { 𝐴 } ) ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] ( 𝑅 ⋉ ◡ E ) ∩ [ 𝑣 ] ( 𝑅 ⋉ ◡ E ) ) = ∅ ) ↔ ( ∀ 𝑢 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] ( 𝑅 ⋉ ◡ E ) ∩ [ 𝑣 ] ( 𝑅 ⋉ ◡ E ) ) = ∅ ) ∧ ∀ 𝑢 ∈ 𝐴 ( ( 𝑢 ∩ 𝐴 ) = ∅ ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝐴 ] 𝑅 ) = ∅ ) ) ) ) |