Step |
Hyp |
Ref |
Expression |
1 |
|
snssi |
⊢ ( ∅ ∈ 𝐴 → { ∅ } ⊆ 𝐴 ) |
2 |
|
ssequn2 |
⊢ ( { ∅ } ⊆ 𝐴 ↔ ( 𝐴 ∪ { ∅ } ) = 𝐴 ) |
3 |
1 2
|
sylib |
⊢ ( ∅ ∈ 𝐴 → ( 𝐴 ∪ { ∅ } ) = 𝐴 ) |
4 |
3
|
disjeq1d |
⊢ ( ∅ ∈ 𝐴 → ( Disj 𝑥 ∈ ( 𝐴 ∪ { ∅ } ) 𝑥 ↔ Disj 𝑥 ∈ 𝐴 𝑥 ) ) |
5 |
4
|
biimparc |
⊢ ( ( Disj 𝑥 ∈ 𝐴 𝑥 ∧ ∅ ∈ 𝐴 ) → Disj 𝑥 ∈ ( 𝐴 ∪ { ∅ } ) 𝑥 ) |
6 |
|
simpl |
⊢ ( ( Disj 𝑥 ∈ 𝐴 𝑥 ∧ ¬ ∅ ∈ 𝐴 ) → Disj 𝑥 ∈ 𝐴 𝑥 ) |
7 |
|
in0 |
⊢ ( ∪ 𝑥 ∈ 𝐴 𝑥 ∩ ∅ ) = ∅ |
8 |
7
|
a1i |
⊢ ( ( Disj 𝑥 ∈ 𝐴 𝑥 ∧ ¬ ∅ ∈ 𝐴 ) → ( ∪ 𝑥 ∈ 𝐴 𝑥 ∩ ∅ ) = ∅ ) |
9 |
|
0ex |
⊢ ∅ ∈ V |
10 |
|
id |
⊢ ( 𝑥 = ∅ → 𝑥 = ∅ ) |
11 |
10
|
disjunsn |
⊢ ( ( ∅ ∈ V ∧ ¬ ∅ ∈ 𝐴 ) → ( Disj 𝑥 ∈ ( 𝐴 ∪ { ∅ } ) 𝑥 ↔ ( Disj 𝑥 ∈ 𝐴 𝑥 ∧ ( ∪ 𝑥 ∈ 𝐴 𝑥 ∩ ∅ ) = ∅ ) ) ) |
12 |
9 11
|
mpan |
⊢ ( ¬ ∅ ∈ 𝐴 → ( Disj 𝑥 ∈ ( 𝐴 ∪ { ∅ } ) 𝑥 ↔ ( Disj 𝑥 ∈ 𝐴 𝑥 ∧ ( ∪ 𝑥 ∈ 𝐴 𝑥 ∩ ∅ ) = ∅ ) ) ) |
13 |
12
|
adantl |
⊢ ( ( Disj 𝑥 ∈ 𝐴 𝑥 ∧ ¬ ∅ ∈ 𝐴 ) → ( Disj 𝑥 ∈ ( 𝐴 ∪ { ∅ } ) 𝑥 ↔ ( Disj 𝑥 ∈ 𝐴 𝑥 ∧ ( ∪ 𝑥 ∈ 𝐴 𝑥 ∩ ∅ ) = ∅ ) ) ) |
14 |
6 8 13
|
mpbir2and |
⊢ ( ( Disj 𝑥 ∈ 𝐴 𝑥 ∧ ¬ ∅ ∈ 𝐴 ) → Disj 𝑥 ∈ ( 𝐴 ∪ { ∅ } ) 𝑥 ) |
15 |
5 14
|
pm2.61dan |
⊢ ( Disj 𝑥 ∈ 𝐴 𝑥 → Disj 𝑥 ∈ ( 𝐴 ∪ { ∅ } ) 𝑥 ) |