Metamath Proof Explorer


Theorem disjuniel

Description: A set of elements B of a disjoint set A is disjoint with another element of that set. (Contributed by Thierry Arnoux, 24-May-2020)

Ref Expression
Hypotheses disjuniel.1 ( 𝜑Disj 𝑥𝐴 𝑥 )
disjuniel.2 ( 𝜑𝐵𝐴 )
disjuniel.3 ( 𝜑𝐶 ∈ ( 𝐴𝐵 ) )
Assertion disjuniel ( 𝜑 → ( 𝐵𝐶 ) = ∅ )

Proof

Step Hyp Ref Expression
1 disjuniel.1 ( 𝜑Disj 𝑥𝐴 𝑥 )
2 disjuniel.2 ( 𝜑𝐵𝐴 )
3 disjuniel.3 ( 𝜑𝐶 ∈ ( 𝐴𝐵 ) )
4 uniiun 𝐵 = 𝑥𝐵 𝑥
5 4 ineq1i ( 𝐵𝐶 ) = ( 𝑥𝐵 𝑥𝐶 )
6 id ( 𝑥 = 𝐶𝑥 = 𝐶 )
7 1 6 2 3 disjiunel ( 𝜑 → ( 𝑥𝐵 𝑥𝐶 ) = ∅ )
8 5 7 syl5eq ( 𝜑 → ( 𝐵𝐶 ) = ∅ )