Metamath Proof Explorer
Description: A set of elements B of a disjoint set A is disjoint with another element
of that set. (Contributed by Thierry Arnoux, 24-May-2020)
|
|
Ref |
Expression |
|
Hypotheses |
disjuniel.1 |
⊢ ( 𝜑 → Disj 𝑥 ∈ 𝐴 𝑥 ) |
|
|
disjuniel.2 |
⊢ ( 𝜑 → 𝐵 ⊆ 𝐴 ) |
|
|
disjuniel.3 |
⊢ ( 𝜑 → 𝐶 ∈ ( 𝐴 ∖ 𝐵 ) ) |
|
Assertion |
disjuniel |
⊢ ( 𝜑 → ( ∪ 𝐵 ∩ 𝐶 ) = ∅ ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
disjuniel.1 |
⊢ ( 𝜑 → Disj 𝑥 ∈ 𝐴 𝑥 ) |
2 |
|
disjuniel.2 |
⊢ ( 𝜑 → 𝐵 ⊆ 𝐴 ) |
3 |
|
disjuniel.3 |
⊢ ( 𝜑 → 𝐶 ∈ ( 𝐴 ∖ 𝐵 ) ) |
4 |
|
uniiun |
⊢ ∪ 𝐵 = ∪ 𝑥 ∈ 𝐵 𝑥 |
5 |
4
|
ineq1i |
⊢ ( ∪ 𝐵 ∩ 𝐶 ) = ( ∪ 𝑥 ∈ 𝐵 𝑥 ∩ 𝐶 ) |
6 |
|
id |
⊢ ( 𝑥 = 𝐶 → 𝑥 = 𝐶 ) |
7 |
1 6 2 3
|
disjiunel |
⊢ ( 𝜑 → ( ∪ 𝑥 ∈ 𝐵 𝑥 ∩ 𝐶 ) = ∅ ) |
8 |
5 7
|
syl5eq |
⊢ ( 𝜑 → ( ∪ 𝐵 ∩ 𝐶 ) = ∅ ) |