Step |
Hyp |
Ref |
Expression |
1 |
|
disjunsn.s |
⊢ ( 𝑥 = 𝑀 → 𝐵 = 𝐶 ) |
2 |
|
disjors |
⊢ ( Disj 𝑥 ∈ ( 𝐴 ∪ { 𝑀 } ) 𝐵 ↔ ∀ 𝑖 ∈ ( 𝐴 ∪ { 𝑀 } ) ∀ 𝑗 ∈ ( 𝐴 ∪ { 𝑀 } ) ( 𝑖 = 𝑗 ∨ ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) |
3 |
|
eqeq1 |
⊢ ( 𝑖 = 𝑀 → ( 𝑖 = 𝑗 ↔ 𝑀 = 𝑗 ) ) |
4 |
|
csbeq1 |
⊢ ( 𝑖 = 𝑀 → ⦋ 𝑖 / 𝑥 ⦌ 𝐵 = ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ) |
5 |
4
|
ineq1d |
⊢ ( 𝑖 = 𝑀 → ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ( ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) ) |
6 |
5
|
eqeq1d |
⊢ ( 𝑖 = 𝑀 → ( ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ↔ ( ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) |
7 |
3 6
|
orbi12d |
⊢ ( 𝑖 = 𝑀 → ( ( 𝑖 = 𝑗 ∨ ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ) ↔ ( 𝑀 = 𝑗 ∨ ( ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) ) |
8 |
7
|
ralbidv |
⊢ ( 𝑖 = 𝑀 → ( ∀ 𝑗 ∈ ( 𝐴 ∪ { 𝑀 } ) ( 𝑖 = 𝑗 ∨ ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ) ↔ ∀ 𝑗 ∈ ( 𝐴 ∪ { 𝑀 } ) ( 𝑀 = 𝑗 ∨ ( ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) ) |
9 |
8
|
ralunsn |
⊢ ( 𝑀 ∈ 𝑉 → ( ∀ 𝑖 ∈ ( 𝐴 ∪ { 𝑀 } ) ∀ 𝑗 ∈ ( 𝐴 ∪ { 𝑀 } ) ( 𝑖 = 𝑗 ∨ ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ) ↔ ( ∀ 𝑖 ∈ 𝐴 ∀ 𝑗 ∈ ( 𝐴 ∪ { 𝑀 } ) ( 𝑖 = 𝑗 ∨ ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ) ∧ ∀ 𝑗 ∈ ( 𝐴 ∪ { 𝑀 } ) ( 𝑀 = 𝑗 ∨ ( ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) ) ) |
10 |
2 9
|
syl5bb |
⊢ ( 𝑀 ∈ 𝑉 → ( Disj 𝑥 ∈ ( 𝐴 ∪ { 𝑀 } ) 𝐵 ↔ ( ∀ 𝑖 ∈ 𝐴 ∀ 𝑗 ∈ ( 𝐴 ∪ { 𝑀 } ) ( 𝑖 = 𝑗 ∨ ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ) ∧ ∀ 𝑗 ∈ ( 𝐴 ∪ { 𝑀 } ) ( 𝑀 = 𝑗 ∨ ( ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) ) ) |
11 |
|
eqeq2 |
⊢ ( 𝑗 = 𝑀 → ( 𝑖 = 𝑗 ↔ 𝑖 = 𝑀 ) ) |
12 |
|
csbeq1 |
⊢ ( 𝑗 = 𝑀 → ⦋ 𝑗 / 𝑥 ⦌ 𝐵 = ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ) |
13 |
12
|
ineq2d |
⊢ ( 𝑗 = 𝑀 → ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ) ) |
14 |
13
|
eqeq1d |
⊢ ( 𝑗 = 𝑀 → ( ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ↔ ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) |
15 |
11 14
|
orbi12d |
⊢ ( 𝑗 = 𝑀 → ( ( 𝑖 = 𝑗 ∨ ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ) ↔ ( 𝑖 = 𝑀 ∨ ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) ) |
16 |
15
|
ralunsn |
⊢ ( 𝑀 ∈ 𝑉 → ( ∀ 𝑗 ∈ ( 𝐴 ∪ { 𝑀 } ) ( 𝑖 = 𝑗 ∨ ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ) ↔ ( ∀ 𝑗 ∈ 𝐴 ( 𝑖 = 𝑗 ∨ ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ) ∧ ( 𝑖 = 𝑀 ∨ ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) ) ) |
17 |
16
|
ralbidv |
⊢ ( 𝑀 ∈ 𝑉 → ( ∀ 𝑖 ∈ 𝐴 ∀ 𝑗 ∈ ( 𝐴 ∪ { 𝑀 } ) ( 𝑖 = 𝑗 ∨ ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ) ↔ ∀ 𝑖 ∈ 𝐴 ( ∀ 𝑗 ∈ 𝐴 ( 𝑖 = 𝑗 ∨ ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ) ∧ ( 𝑖 = 𝑀 ∨ ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) ) ) |
18 |
|
eqeq2 |
⊢ ( 𝑗 = 𝑀 → ( 𝑀 = 𝑗 ↔ 𝑀 = 𝑀 ) ) |
19 |
12
|
ineq2d |
⊢ ( 𝑗 = 𝑀 → ( ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ( ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ) ) |
20 |
19
|
eqeq1d |
⊢ ( 𝑗 = 𝑀 → ( ( ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ↔ ( ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) |
21 |
18 20
|
orbi12d |
⊢ ( 𝑗 = 𝑀 → ( ( 𝑀 = 𝑗 ∨ ( ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ) ↔ ( 𝑀 = 𝑀 ∨ ( ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) ) |
22 |
21
|
ralunsn |
⊢ ( 𝑀 ∈ 𝑉 → ( ∀ 𝑗 ∈ ( 𝐴 ∪ { 𝑀 } ) ( 𝑀 = 𝑗 ∨ ( ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ) ↔ ( ∀ 𝑗 ∈ 𝐴 ( 𝑀 = 𝑗 ∨ ( ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ) ∧ ( 𝑀 = 𝑀 ∨ ( ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) ) ) |
23 |
|
eqid |
⊢ 𝑀 = 𝑀 |
24 |
23
|
orci |
⊢ ( 𝑀 = 𝑀 ∨ ( ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ) = ∅ ) |
25 |
24
|
biantru |
⊢ ( ∀ 𝑗 ∈ 𝐴 ( 𝑀 = 𝑗 ∨ ( ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ) ↔ ( ∀ 𝑗 ∈ 𝐴 ( 𝑀 = 𝑗 ∨ ( ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ) ∧ ( 𝑀 = 𝑀 ∨ ( ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) ) |
26 |
22 25
|
bitr4di |
⊢ ( 𝑀 ∈ 𝑉 → ( ∀ 𝑗 ∈ ( 𝐴 ∪ { 𝑀 } ) ( 𝑀 = 𝑗 ∨ ( ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ) ↔ ∀ 𝑗 ∈ 𝐴 ( 𝑀 = 𝑗 ∨ ( ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) ) |
27 |
17 26
|
anbi12d |
⊢ ( 𝑀 ∈ 𝑉 → ( ( ∀ 𝑖 ∈ 𝐴 ∀ 𝑗 ∈ ( 𝐴 ∪ { 𝑀 } ) ( 𝑖 = 𝑗 ∨ ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ) ∧ ∀ 𝑗 ∈ ( 𝐴 ∪ { 𝑀 } ) ( 𝑀 = 𝑗 ∨ ( ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) ↔ ( ∀ 𝑖 ∈ 𝐴 ( ∀ 𝑗 ∈ 𝐴 ( 𝑖 = 𝑗 ∨ ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ) ∧ ( 𝑖 = 𝑀 ∨ ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) ∧ ∀ 𝑗 ∈ 𝐴 ( 𝑀 = 𝑗 ∨ ( ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) ) ) |
28 |
10 27
|
bitrd |
⊢ ( 𝑀 ∈ 𝑉 → ( Disj 𝑥 ∈ ( 𝐴 ∪ { 𝑀 } ) 𝐵 ↔ ( ∀ 𝑖 ∈ 𝐴 ( ∀ 𝑗 ∈ 𝐴 ( 𝑖 = 𝑗 ∨ ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ) ∧ ( 𝑖 = 𝑀 ∨ ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) ∧ ∀ 𝑗 ∈ 𝐴 ( 𝑀 = 𝑗 ∨ ( ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) ) ) |
29 |
|
r19.26 |
⊢ ( ∀ 𝑖 ∈ 𝐴 ( ∀ 𝑗 ∈ 𝐴 ( 𝑖 = 𝑗 ∨ ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ) ∧ ( 𝑖 = 𝑀 ∨ ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) ↔ ( ∀ 𝑖 ∈ 𝐴 ∀ 𝑗 ∈ 𝐴 ( 𝑖 = 𝑗 ∨ ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ) ∧ ∀ 𝑖 ∈ 𝐴 ( 𝑖 = 𝑀 ∨ ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) ) |
30 |
|
disjors |
⊢ ( Disj 𝑥 ∈ 𝐴 𝐵 ↔ ∀ 𝑖 ∈ 𝐴 ∀ 𝑗 ∈ 𝐴 ( 𝑖 = 𝑗 ∨ ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) |
31 |
30
|
anbi1i |
⊢ ( ( Disj 𝑥 ∈ 𝐴 𝐵 ∧ ∀ 𝑖 ∈ 𝐴 ( 𝑖 = 𝑀 ∨ ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) ↔ ( ∀ 𝑖 ∈ 𝐴 ∀ 𝑗 ∈ 𝐴 ( 𝑖 = 𝑗 ∨ ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ) ∧ ∀ 𝑖 ∈ 𝐴 ( 𝑖 = 𝑀 ∨ ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) ) |
32 |
29 31
|
bitr4i |
⊢ ( ∀ 𝑖 ∈ 𝐴 ( ∀ 𝑗 ∈ 𝐴 ( 𝑖 = 𝑗 ∨ ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ) ∧ ( 𝑖 = 𝑀 ∨ ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) ↔ ( Disj 𝑥 ∈ 𝐴 𝐵 ∧ ∀ 𝑖 ∈ 𝐴 ( 𝑖 = 𝑀 ∨ ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) ) |
33 |
32
|
anbi1i |
⊢ ( ( ∀ 𝑖 ∈ 𝐴 ( ∀ 𝑗 ∈ 𝐴 ( 𝑖 = 𝑗 ∨ ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ) ∧ ( 𝑖 = 𝑀 ∨ ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) ∧ ∀ 𝑗 ∈ 𝐴 ( 𝑀 = 𝑗 ∨ ( ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) ↔ ( ( Disj 𝑥 ∈ 𝐴 𝐵 ∧ ∀ 𝑖 ∈ 𝐴 ( 𝑖 = 𝑀 ∨ ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) ∧ ∀ 𝑗 ∈ 𝐴 ( 𝑀 = 𝑗 ∨ ( ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) ) |
34 |
28 33
|
bitrdi |
⊢ ( 𝑀 ∈ 𝑉 → ( Disj 𝑥 ∈ ( 𝐴 ∪ { 𝑀 } ) 𝐵 ↔ ( ( Disj 𝑥 ∈ 𝐴 𝐵 ∧ ∀ 𝑖 ∈ 𝐴 ( 𝑖 = 𝑀 ∨ ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) ∧ ∀ 𝑗 ∈ 𝐴 ( 𝑀 = 𝑗 ∨ ( ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) ) ) |
35 |
34
|
adantr |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ ¬ 𝑀 ∈ 𝐴 ) → ( Disj 𝑥 ∈ ( 𝐴 ∪ { 𝑀 } ) 𝐵 ↔ ( ( Disj 𝑥 ∈ 𝐴 𝐵 ∧ ∀ 𝑖 ∈ 𝐴 ( 𝑖 = 𝑀 ∨ ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) ∧ ∀ 𝑗 ∈ 𝐴 ( 𝑀 = 𝑗 ∨ ( ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) ) ) |
36 |
|
orcom |
⊢ ( ( ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ) = ∅ ∨ 𝑖 = 𝑀 ) ↔ ( 𝑖 = 𝑀 ∨ ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) |
37 |
36
|
ralbii |
⊢ ( ∀ 𝑖 ∈ 𝐴 ( ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ) = ∅ ∨ 𝑖 = 𝑀 ) ↔ ∀ 𝑖 ∈ 𝐴 ( 𝑖 = 𝑀 ∨ ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) |
38 |
|
r19.30 |
⊢ ( ∀ 𝑖 ∈ 𝐴 ( ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ) = ∅ ∨ 𝑖 = 𝑀 ) → ( ∀ 𝑖 ∈ 𝐴 ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ) = ∅ ∨ ∃ 𝑖 ∈ 𝐴 𝑖 = 𝑀 ) ) |
39 |
|
risset |
⊢ ( 𝑀 ∈ 𝐴 ↔ ∃ 𝑖 ∈ 𝐴 𝑖 = 𝑀 ) |
40 |
|
biorf |
⊢ ( ¬ ∃ 𝑖 ∈ 𝐴 𝑖 = 𝑀 → ( ∀ 𝑖 ∈ 𝐴 ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ) = ∅ ↔ ( ∃ 𝑖 ∈ 𝐴 𝑖 = 𝑀 ∨ ∀ 𝑖 ∈ 𝐴 ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) ) |
41 |
39 40
|
sylnbi |
⊢ ( ¬ 𝑀 ∈ 𝐴 → ( ∀ 𝑖 ∈ 𝐴 ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ) = ∅ ↔ ( ∃ 𝑖 ∈ 𝐴 𝑖 = 𝑀 ∨ ∀ 𝑖 ∈ 𝐴 ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) ) |
42 |
41
|
adantl |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ ¬ 𝑀 ∈ 𝐴 ) → ( ∀ 𝑖 ∈ 𝐴 ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ) = ∅ ↔ ( ∃ 𝑖 ∈ 𝐴 𝑖 = 𝑀 ∨ ∀ 𝑖 ∈ 𝐴 ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) ) |
43 |
|
orcom |
⊢ ( ( ∃ 𝑖 ∈ 𝐴 𝑖 = 𝑀 ∨ ∀ 𝑖 ∈ 𝐴 ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ) = ∅ ) ↔ ( ∀ 𝑖 ∈ 𝐴 ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ) = ∅ ∨ ∃ 𝑖 ∈ 𝐴 𝑖 = 𝑀 ) ) |
44 |
42 43
|
bitrdi |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ ¬ 𝑀 ∈ 𝐴 ) → ( ∀ 𝑖 ∈ 𝐴 ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ) = ∅ ↔ ( ∀ 𝑖 ∈ 𝐴 ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ) = ∅ ∨ ∃ 𝑖 ∈ 𝐴 𝑖 = 𝑀 ) ) ) |
45 |
38 44
|
syl5ibr |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ ¬ 𝑀 ∈ 𝐴 ) → ( ∀ 𝑖 ∈ 𝐴 ( ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ) = ∅ ∨ 𝑖 = 𝑀 ) → ∀ 𝑖 ∈ 𝐴 ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) |
46 |
37 45
|
syl5bir |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ ¬ 𝑀 ∈ 𝐴 ) → ( ∀ 𝑖 ∈ 𝐴 ( 𝑖 = 𝑀 ∨ ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ) = ∅ ) → ∀ 𝑖 ∈ 𝐴 ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) |
47 |
|
olc |
⊢ ( ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ) = ∅ → ( 𝑖 = 𝑀 ∨ ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) |
48 |
47
|
ralimi |
⊢ ( ∀ 𝑖 ∈ 𝐴 ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ) = ∅ → ∀ 𝑖 ∈ 𝐴 ( 𝑖 = 𝑀 ∨ ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) |
49 |
46 48
|
impbid1 |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ ¬ 𝑀 ∈ 𝐴 ) → ( ∀ 𝑖 ∈ 𝐴 ( 𝑖 = 𝑀 ∨ ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ) = ∅ ) ↔ ∀ 𝑖 ∈ 𝐴 ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) |
50 |
|
nfv |
⊢ Ⅎ 𝑖 ( 𝐵 ∩ 𝐶 ) = ∅ |
51 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑖 / 𝑥 ⦌ 𝐵 |
52 |
|
nfcv |
⊢ Ⅎ 𝑥 𝐶 |
53 |
51 52
|
nfin |
⊢ Ⅎ 𝑥 ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) |
54 |
53
|
nfeq1 |
⊢ Ⅎ 𝑥 ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) = ∅ |
55 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑖 → 𝐵 = ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ) |
56 |
55
|
ineq1d |
⊢ ( 𝑥 = 𝑖 → ( 𝐵 ∩ 𝐶 ) = ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) ) |
57 |
56
|
eqeq1d |
⊢ ( 𝑥 = 𝑖 → ( ( 𝐵 ∩ 𝐶 ) = ∅ ↔ ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) = ∅ ) ) |
58 |
50 54 57
|
cbvralw |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝐵 ∩ 𝐶 ) = ∅ ↔ ∀ 𝑖 ∈ 𝐴 ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) = ∅ ) |
59 |
58
|
a1i |
⊢ ( 𝑀 ∈ 𝑉 → ( ∀ 𝑥 ∈ 𝐴 ( 𝐵 ∩ 𝐶 ) = ∅ ↔ ∀ 𝑖 ∈ 𝐴 ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) = ∅ ) ) |
60 |
|
ss0b |
⊢ ( ∪ 𝑥 ∈ 𝐴 ( 𝐵 ∩ 𝐶 ) ⊆ ∅ ↔ ∪ 𝑥 ∈ 𝐴 ( 𝐵 ∩ 𝐶 ) = ∅ ) |
61 |
|
iunss |
⊢ ( ∪ 𝑥 ∈ 𝐴 ( 𝐵 ∩ 𝐶 ) ⊆ ∅ ↔ ∀ 𝑥 ∈ 𝐴 ( 𝐵 ∩ 𝐶 ) ⊆ ∅ ) |
62 |
|
iunin1 |
⊢ ∪ 𝑥 ∈ 𝐴 ( 𝐵 ∩ 𝐶 ) = ( ∪ 𝑥 ∈ 𝐴 𝐵 ∩ 𝐶 ) |
63 |
62
|
eqeq1i |
⊢ ( ∪ 𝑥 ∈ 𝐴 ( 𝐵 ∩ 𝐶 ) = ∅ ↔ ( ∪ 𝑥 ∈ 𝐴 𝐵 ∩ 𝐶 ) = ∅ ) |
64 |
60 61 63
|
3bitr3ri |
⊢ ( ( ∪ 𝑥 ∈ 𝐴 𝐵 ∩ 𝐶 ) = ∅ ↔ ∀ 𝑥 ∈ 𝐴 ( 𝐵 ∩ 𝐶 ) ⊆ ∅ ) |
65 |
|
ss0b |
⊢ ( ( 𝐵 ∩ 𝐶 ) ⊆ ∅ ↔ ( 𝐵 ∩ 𝐶 ) = ∅ ) |
66 |
65
|
ralbii |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝐵 ∩ 𝐶 ) ⊆ ∅ ↔ ∀ 𝑥 ∈ 𝐴 ( 𝐵 ∩ 𝐶 ) = ∅ ) |
67 |
64 66
|
bitri |
⊢ ( ( ∪ 𝑥 ∈ 𝐴 𝐵 ∩ 𝐶 ) = ∅ ↔ ∀ 𝑥 ∈ 𝐴 ( 𝐵 ∩ 𝐶 ) = ∅ ) |
68 |
67
|
a1i |
⊢ ( 𝑀 ∈ 𝑉 → ( ( ∪ 𝑥 ∈ 𝐴 𝐵 ∩ 𝐶 ) = ∅ ↔ ∀ 𝑥 ∈ 𝐴 ( 𝐵 ∩ 𝐶 ) = ∅ ) ) |
69 |
|
nfcvd |
⊢ ( 𝑀 ∈ 𝑉 → Ⅎ 𝑥 𝐶 ) |
70 |
69 1
|
csbiegf |
⊢ ( 𝑀 ∈ 𝑉 → ⦋ 𝑀 / 𝑥 ⦌ 𝐵 = 𝐶 ) |
71 |
70
|
ineq2d |
⊢ ( 𝑀 ∈ 𝑉 → ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ) = ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) ) |
72 |
71
|
eqeq1d |
⊢ ( 𝑀 ∈ 𝑉 → ( ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ) = ∅ ↔ ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) = ∅ ) ) |
73 |
72
|
ralbidv |
⊢ ( 𝑀 ∈ 𝑉 → ( ∀ 𝑖 ∈ 𝐴 ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ) = ∅ ↔ ∀ 𝑖 ∈ 𝐴 ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) = ∅ ) ) |
74 |
59 68 73
|
3bitr4d |
⊢ ( 𝑀 ∈ 𝑉 → ( ( ∪ 𝑥 ∈ 𝐴 𝐵 ∩ 𝐶 ) = ∅ ↔ ∀ 𝑖 ∈ 𝐴 ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) |
75 |
74
|
adantr |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ ¬ 𝑀 ∈ 𝐴 ) → ( ( ∪ 𝑥 ∈ 𝐴 𝐵 ∩ 𝐶 ) = ∅ ↔ ∀ 𝑖 ∈ 𝐴 ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) |
76 |
49 75
|
bitr4d |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ ¬ 𝑀 ∈ 𝐴 ) → ( ∀ 𝑖 ∈ 𝐴 ( 𝑖 = 𝑀 ∨ ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ) = ∅ ) ↔ ( ∪ 𝑥 ∈ 𝐴 𝐵 ∩ 𝐶 ) = ∅ ) ) |
77 |
76
|
anbi2d |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ ¬ 𝑀 ∈ 𝐴 ) → ( ( Disj 𝑥 ∈ 𝐴 𝐵 ∧ ∀ 𝑖 ∈ 𝐴 ( 𝑖 = 𝑀 ∨ ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) ↔ ( Disj 𝑥 ∈ 𝐴 𝐵 ∧ ( ∪ 𝑥 ∈ 𝐴 𝐵 ∩ 𝐶 ) = ∅ ) ) ) |
78 |
|
orcom |
⊢ ( ( ( ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ∨ 𝑀 = 𝑗 ) ↔ ( 𝑀 = 𝑗 ∨ ( ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) |
79 |
78
|
ralbii |
⊢ ( ∀ 𝑗 ∈ 𝐴 ( ( ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ∨ 𝑀 = 𝑗 ) ↔ ∀ 𝑗 ∈ 𝐴 ( 𝑀 = 𝑗 ∨ ( ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) |
80 |
|
r19.30 |
⊢ ( ∀ 𝑗 ∈ 𝐴 ( ( ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ∨ 𝑀 = 𝑗 ) → ( ∀ 𝑗 ∈ 𝐴 ( ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ∨ ∃ 𝑗 ∈ 𝐴 𝑀 = 𝑗 ) ) |
81 |
|
clel5 |
⊢ ( 𝑀 ∈ 𝐴 ↔ ∃ 𝑗 ∈ 𝐴 𝑀 = 𝑗 ) |
82 |
|
biorf |
⊢ ( ¬ ∃ 𝑗 ∈ 𝐴 𝑀 = 𝑗 → ( ∀ 𝑗 ∈ 𝐴 ( ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ↔ ( ∃ 𝑗 ∈ 𝐴 𝑀 = 𝑗 ∨ ∀ 𝑗 ∈ 𝐴 ( ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) ) |
83 |
81 82
|
sylnbi |
⊢ ( ¬ 𝑀 ∈ 𝐴 → ( ∀ 𝑗 ∈ 𝐴 ( ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ↔ ( ∃ 𝑗 ∈ 𝐴 𝑀 = 𝑗 ∨ ∀ 𝑗 ∈ 𝐴 ( ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) ) |
84 |
83
|
adantl |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ ¬ 𝑀 ∈ 𝐴 ) → ( ∀ 𝑗 ∈ 𝐴 ( ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ↔ ( ∃ 𝑗 ∈ 𝐴 𝑀 = 𝑗 ∨ ∀ 𝑗 ∈ 𝐴 ( ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) ) |
85 |
|
orcom |
⊢ ( ( ∃ 𝑗 ∈ 𝐴 𝑀 = 𝑗 ∨ ∀ 𝑗 ∈ 𝐴 ( ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ) ↔ ( ∀ 𝑗 ∈ 𝐴 ( ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ∨ ∃ 𝑗 ∈ 𝐴 𝑀 = 𝑗 ) ) |
86 |
84 85
|
bitrdi |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ ¬ 𝑀 ∈ 𝐴 ) → ( ∀ 𝑗 ∈ 𝐴 ( ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ↔ ( ∀ 𝑗 ∈ 𝐴 ( ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ∨ ∃ 𝑗 ∈ 𝐴 𝑀 = 𝑗 ) ) ) |
87 |
80 86
|
syl5ibr |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ ¬ 𝑀 ∈ 𝐴 ) → ( ∀ 𝑗 ∈ 𝐴 ( ( ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ∨ 𝑀 = 𝑗 ) → ∀ 𝑗 ∈ 𝐴 ( ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) |
88 |
79 87
|
syl5bir |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ ¬ 𝑀 ∈ 𝐴 ) → ( ∀ 𝑗 ∈ 𝐴 ( 𝑀 = 𝑗 ∨ ( ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ) → ∀ 𝑗 ∈ 𝐴 ( ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) |
89 |
|
olc |
⊢ ( ( ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ → ( 𝑀 = 𝑗 ∨ ( ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) |
90 |
89
|
ralimi |
⊢ ( ∀ 𝑗 ∈ 𝐴 ( ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ → ∀ 𝑗 ∈ 𝐴 ( 𝑀 = 𝑗 ∨ ( ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) |
91 |
88 90
|
impbid1 |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ ¬ 𝑀 ∈ 𝐴 ) → ( ∀ 𝑗 ∈ 𝐴 ( 𝑀 = 𝑗 ∨ ( ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ) ↔ ∀ 𝑗 ∈ 𝐴 ( ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) |
92 |
|
nfv |
⊢ Ⅎ 𝑗 ( 𝐵 ∩ 𝐶 ) = ∅ |
93 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑗 / 𝑥 ⦌ 𝐵 |
94 |
93 52
|
nfin |
⊢ Ⅎ 𝑥 ( ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) |
95 |
94
|
nfeq1 |
⊢ Ⅎ 𝑥 ( ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) = ∅ |
96 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑗 → 𝐵 = ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) |
97 |
96
|
ineq1d |
⊢ ( 𝑥 = 𝑗 → ( 𝐵 ∩ 𝐶 ) = ( ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) ) |
98 |
97
|
eqeq1d |
⊢ ( 𝑥 = 𝑗 → ( ( 𝐵 ∩ 𝐶 ) = ∅ ↔ ( ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) = ∅ ) ) |
99 |
92 95 98
|
cbvralw |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝐵 ∩ 𝐶 ) = ∅ ↔ ∀ 𝑗 ∈ 𝐴 ( ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) = ∅ ) |
100 |
99
|
a1i |
⊢ ( 𝑀 ∈ 𝑉 → ( ∀ 𝑥 ∈ 𝐴 ( 𝐵 ∩ 𝐶 ) = ∅ ↔ ∀ 𝑗 ∈ 𝐴 ( ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) = ∅ ) ) |
101 |
|
incom |
⊢ ( ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) = ( 𝐶 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) |
102 |
101
|
eqeq1i |
⊢ ( ( ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) = ∅ ↔ ( 𝐶 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ) |
103 |
102
|
ralbii |
⊢ ( ∀ 𝑗 ∈ 𝐴 ( ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) = ∅ ↔ ∀ 𝑗 ∈ 𝐴 ( 𝐶 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ) |
104 |
100 103
|
bitrdi |
⊢ ( 𝑀 ∈ 𝑉 → ( ∀ 𝑥 ∈ 𝐴 ( 𝐵 ∩ 𝐶 ) = ∅ ↔ ∀ 𝑗 ∈ 𝐴 ( 𝐶 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) |
105 |
70
|
ineq1d |
⊢ ( 𝑀 ∈ 𝑉 → ( ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ( 𝐶 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) ) |
106 |
105
|
eqeq1d |
⊢ ( 𝑀 ∈ 𝑉 → ( ( ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ↔ ( 𝐶 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) |
107 |
106
|
ralbidv |
⊢ ( 𝑀 ∈ 𝑉 → ( ∀ 𝑗 ∈ 𝐴 ( ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ↔ ∀ 𝑗 ∈ 𝐴 ( 𝐶 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) |
108 |
104 68 107
|
3bitr4d |
⊢ ( 𝑀 ∈ 𝑉 → ( ( ∪ 𝑥 ∈ 𝐴 𝐵 ∩ 𝐶 ) = ∅ ↔ ∀ 𝑗 ∈ 𝐴 ( ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) |
109 |
108
|
adantr |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ ¬ 𝑀 ∈ 𝐴 ) → ( ( ∪ 𝑥 ∈ 𝐴 𝐵 ∩ 𝐶 ) = ∅ ↔ ∀ 𝑗 ∈ 𝐴 ( ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) |
110 |
91 109
|
bitr4d |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ ¬ 𝑀 ∈ 𝐴 ) → ( ∀ 𝑗 ∈ 𝐴 ( 𝑀 = 𝑗 ∨ ( ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ) ↔ ( ∪ 𝑥 ∈ 𝐴 𝐵 ∩ 𝐶 ) = ∅ ) ) |
111 |
77 110
|
anbi12d |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ ¬ 𝑀 ∈ 𝐴 ) → ( ( ( Disj 𝑥 ∈ 𝐴 𝐵 ∧ ∀ 𝑖 ∈ 𝐴 ( 𝑖 = 𝑀 ∨ ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) ∧ ∀ 𝑗 ∈ 𝐴 ( 𝑀 = 𝑗 ∨ ( ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) ↔ ( ( Disj 𝑥 ∈ 𝐴 𝐵 ∧ ( ∪ 𝑥 ∈ 𝐴 𝐵 ∩ 𝐶 ) = ∅ ) ∧ ( ∪ 𝑥 ∈ 𝐴 𝐵 ∩ 𝐶 ) = ∅ ) ) ) |
112 |
|
anass |
⊢ ( ( ( Disj 𝑥 ∈ 𝐴 𝐵 ∧ ( ∪ 𝑥 ∈ 𝐴 𝐵 ∩ 𝐶 ) = ∅ ) ∧ ( ∪ 𝑥 ∈ 𝐴 𝐵 ∩ 𝐶 ) = ∅ ) ↔ ( Disj 𝑥 ∈ 𝐴 𝐵 ∧ ( ( ∪ 𝑥 ∈ 𝐴 𝐵 ∩ 𝐶 ) = ∅ ∧ ( ∪ 𝑥 ∈ 𝐴 𝐵 ∩ 𝐶 ) = ∅ ) ) ) |
113 |
|
anidm |
⊢ ( ( ( ∪ 𝑥 ∈ 𝐴 𝐵 ∩ 𝐶 ) = ∅ ∧ ( ∪ 𝑥 ∈ 𝐴 𝐵 ∩ 𝐶 ) = ∅ ) ↔ ( ∪ 𝑥 ∈ 𝐴 𝐵 ∩ 𝐶 ) = ∅ ) |
114 |
113
|
anbi2i |
⊢ ( ( Disj 𝑥 ∈ 𝐴 𝐵 ∧ ( ( ∪ 𝑥 ∈ 𝐴 𝐵 ∩ 𝐶 ) = ∅ ∧ ( ∪ 𝑥 ∈ 𝐴 𝐵 ∩ 𝐶 ) = ∅ ) ) ↔ ( Disj 𝑥 ∈ 𝐴 𝐵 ∧ ( ∪ 𝑥 ∈ 𝐴 𝐵 ∩ 𝐶 ) = ∅ ) ) |
115 |
112 114
|
bitri |
⊢ ( ( ( Disj 𝑥 ∈ 𝐴 𝐵 ∧ ( ∪ 𝑥 ∈ 𝐴 𝐵 ∩ 𝐶 ) = ∅ ) ∧ ( ∪ 𝑥 ∈ 𝐴 𝐵 ∩ 𝐶 ) = ∅ ) ↔ ( Disj 𝑥 ∈ 𝐴 𝐵 ∧ ( ∪ 𝑥 ∈ 𝐴 𝐵 ∩ 𝐶 ) = ∅ ) ) |
116 |
111 115
|
bitrdi |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ ¬ 𝑀 ∈ 𝐴 ) → ( ( ( Disj 𝑥 ∈ 𝐴 𝐵 ∧ ∀ 𝑖 ∈ 𝐴 ( 𝑖 = 𝑀 ∨ ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) ∧ ∀ 𝑗 ∈ 𝐴 ( 𝑀 = 𝑗 ∨ ( ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) ↔ ( Disj 𝑥 ∈ 𝐴 𝐵 ∧ ( ∪ 𝑥 ∈ 𝐴 𝐵 ∩ 𝐶 ) = ∅ ) ) ) |
117 |
35 116
|
bitrd |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ ¬ 𝑀 ∈ 𝐴 ) → ( Disj 𝑥 ∈ ( 𝐴 ∪ { 𝑀 } ) 𝐵 ↔ ( Disj 𝑥 ∈ 𝐴 𝐵 ∧ ( ∪ 𝑥 ∈ 𝐴 𝐵 ∩ 𝐶 ) = ∅ ) ) ) |