| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							disjunsn.s | 
							⊢ ( 𝑥  =  𝑀  →  𝐵  =  𝐶 )  | 
						
						
							| 2 | 
							
								
							 | 
							disjors | 
							⊢ ( Disj  𝑥  ∈  ( 𝐴  ∪  { 𝑀 } ) 𝐵  ↔  ∀ 𝑖  ∈  ( 𝐴  ∪  { 𝑀 } ) ∀ 𝑗  ∈  ( 𝐴  ∪  { 𝑀 } ) ( 𝑖  =  𝑗  ∨  ( ⦋ 𝑖  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑗  /  𝑥 ⦌ 𝐵 )  =  ∅ ) )  | 
						
						
							| 3 | 
							
								
							 | 
							eqeq1 | 
							⊢ ( 𝑖  =  𝑀  →  ( 𝑖  =  𝑗  ↔  𝑀  =  𝑗 ) )  | 
						
						
							| 4 | 
							
								
							 | 
							csbeq1 | 
							⊢ ( 𝑖  =  𝑀  →  ⦋ 𝑖  /  𝑥 ⦌ 𝐵  =  ⦋ 𝑀  /  𝑥 ⦌ 𝐵 )  | 
						
						
							| 5 | 
							
								4
							 | 
							ineq1d | 
							⊢ ( 𝑖  =  𝑀  →  ( ⦋ 𝑖  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑗  /  𝑥 ⦌ 𝐵 )  =  ( ⦋ 𝑀  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑗  /  𝑥 ⦌ 𝐵 ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							eqeq1d | 
							⊢ ( 𝑖  =  𝑀  →  ( ( ⦋ 𝑖  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑗  /  𝑥 ⦌ 𝐵 )  =  ∅  ↔  ( ⦋ 𝑀  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑗  /  𝑥 ⦌ 𝐵 )  =  ∅ ) )  | 
						
						
							| 7 | 
							
								3 6
							 | 
							orbi12d | 
							⊢ ( 𝑖  =  𝑀  →  ( ( 𝑖  =  𝑗  ∨  ( ⦋ 𝑖  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑗  /  𝑥 ⦌ 𝐵 )  =  ∅ )  ↔  ( 𝑀  =  𝑗  ∨  ( ⦋ 𝑀  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑗  /  𝑥 ⦌ 𝐵 )  =  ∅ ) ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							ralbidv | 
							⊢ ( 𝑖  =  𝑀  →  ( ∀ 𝑗  ∈  ( 𝐴  ∪  { 𝑀 } ) ( 𝑖  =  𝑗  ∨  ( ⦋ 𝑖  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑗  /  𝑥 ⦌ 𝐵 )  =  ∅ )  ↔  ∀ 𝑗  ∈  ( 𝐴  ∪  { 𝑀 } ) ( 𝑀  =  𝑗  ∨  ( ⦋ 𝑀  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑗  /  𝑥 ⦌ 𝐵 )  =  ∅ ) ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							ralunsn | 
							⊢ ( 𝑀  ∈  𝑉  →  ( ∀ 𝑖  ∈  ( 𝐴  ∪  { 𝑀 } ) ∀ 𝑗  ∈  ( 𝐴  ∪  { 𝑀 } ) ( 𝑖  =  𝑗  ∨  ( ⦋ 𝑖  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑗  /  𝑥 ⦌ 𝐵 )  =  ∅ )  ↔  ( ∀ 𝑖  ∈  𝐴 ∀ 𝑗  ∈  ( 𝐴  ∪  { 𝑀 } ) ( 𝑖  =  𝑗  ∨  ( ⦋ 𝑖  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑗  /  𝑥 ⦌ 𝐵 )  =  ∅ )  ∧  ∀ 𝑗  ∈  ( 𝐴  ∪  { 𝑀 } ) ( 𝑀  =  𝑗  ∨  ( ⦋ 𝑀  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑗  /  𝑥 ⦌ 𝐵 )  =  ∅ ) ) ) )  | 
						
						
							| 10 | 
							
								2 9
							 | 
							bitrid | 
							⊢ ( 𝑀  ∈  𝑉  →  ( Disj  𝑥  ∈  ( 𝐴  ∪  { 𝑀 } ) 𝐵  ↔  ( ∀ 𝑖  ∈  𝐴 ∀ 𝑗  ∈  ( 𝐴  ∪  { 𝑀 } ) ( 𝑖  =  𝑗  ∨  ( ⦋ 𝑖  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑗  /  𝑥 ⦌ 𝐵 )  =  ∅ )  ∧  ∀ 𝑗  ∈  ( 𝐴  ∪  { 𝑀 } ) ( 𝑀  =  𝑗  ∨  ( ⦋ 𝑀  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑗  /  𝑥 ⦌ 𝐵 )  =  ∅ ) ) ) )  | 
						
						
							| 11 | 
							
								
							 | 
							eqeq2 | 
							⊢ ( 𝑗  =  𝑀  →  ( 𝑖  =  𝑗  ↔  𝑖  =  𝑀 ) )  | 
						
						
							| 12 | 
							
								
							 | 
							csbeq1 | 
							⊢ ( 𝑗  =  𝑀  →  ⦋ 𝑗  /  𝑥 ⦌ 𝐵  =  ⦋ 𝑀  /  𝑥 ⦌ 𝐵 )  | 
						
						
							| 13 | 
							
								12
							 | 
							ineq2d | 
							⊢ ( 𝑗  =  𝑀  →  ( ⦋ 𝑖  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑗  /  𝑥 ⦌ 𝐵 )  =  ( ⦋ 𝑖  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑀  /  𝑥 ⦌ 𝐵 ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							eqeq1d | 
							⊢ ( 𝑗  =  𝑀  →  ( ( ⦋ 𝑖  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑗  /  𝑥 ⦌ 𝐵 )  =  ∅  ↔  ( ⦋ 𝑖  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑀  /  𝑥 ⦌ 𝐵 )  =  ∅ ) )  | 
						
						
							| 15 | 
							
								11 14
							 | 
							orbi12d | 
							⊢ ( 𝑗  =  𝑀  →  ( ( 𝑖  =  𝑗  ∨  ( ⦋ 𝑖  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑗  /  𝑥 ⦌ 𝐵 )  =  ∅ )  ↔  ( 𝑖  =  𝑀  ∨  ( ⦋ 𝑖  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑀  /  𝑥 ⦌ 𝐵 )  =  ∅ ) ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							ralunsn | 
							⊢ ( 𝑀  ∈  𝑉  →  ( ∀ 𝑗  ∈  ( 𝐴  ∪  { 𝑀 } ) ( 𝑖  =  𝑗  ∨  ( ⦋ 𝑖  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑗  /  𝑥 ⦌ 𝐵 )  =  ∅ )  ↔  ( ∀ 𝑗  ∈  𝐴 ( 𝑖  =  𝑗  ∨  ( ⦋ 𝑖  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑗  /  𝑥 ⦌ 𝐵 )  =  ∅ )  ∧  ( 𝑖  =  𝑀  ∨  ( ⦋ 𝑖  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑀  /  𝑥 ⦌ 𝐵 )  =  ∅ ) ) ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							ralbidv | 
							⊢ ( 𝑀  ∈  𝑉  →  ( ∀ 𝑖  ∈  𝐴 ∀ 𝑗  ∈  ( 𝐴  ∪  { 𝑀 } ) ( 𝑖  =  𝑗  ∨  ( ⦋ 𝑖  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑗  /  𝑥 ⦌ 𝐵 )  =  ∅ )  ↔  ∀ 𝑖  ∈  𝐴 ( ∀ 𝑗  ∈  𝐴 ( 𝑖  =  𝑗  ∨  ( ⦋ 𝑖  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑗  /  𝑥 ⦌ 𝐵 )  =  ∅ )  ∧  ( 𝑖  =  𝑀  ∨  ( ⦋ 𝑖  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑀  /  𝑥 ⦌ 𝐵 )  =  ∅ ) ) ) )  | 
						
						
							| 18 | 
							
								
							 | 
							eqeq2 | 
							⊢ ( 𝑗  =  𝑀  →  ( 𝑀  =  𝑗  ↔  𝑀  =  𝑀 ) )  | 
						
						
							| 19 | 
							
								12
							 | 
							ineq2d | 
							⊢ ( 𝑗  =  𝑀  →  ( ⦋ 𝑀  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑗  /  𝑥 ⦌ 𝐵 )  =  ( ⦋ 𝑀  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑀  /  𝑥 ⦌ 𝐵 ) )  | 
						
						
							| 20 | 
							
								19
							 | 
							eqeq1d | 
							⊢ ( 𝑗  =  𝑀  →  ( ( ⦋ 𝑀  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑗  /  𝑥 ⦌ 𝐵 )  =  ∅  ↔  ( ⦋ 𝑀  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑀  /  𝑥 ⦌ 𝐵 )  =  ∅ ) )  | 
						
						
							| 21 | 
							
								18 20
							 | 
							orbi12d | 
							⊢ ( 𝑗  =  𝑀  →  ( ( 𝑀  =  𝑗  ∨  ( ⦋ 𝑀  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑗  /  𝑥 ⦌ 𝐵 )  =  ∅ )  ↔  ( 𝑀  =  𝑀  ∨  ( ⦋ 𝑀  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑀  /  𝑥 ⦌ 𝐵 )  =  ∅ ) ) )  | 
						
						
							| 22 | 
							
								21
							 | 
							ralunsn | 
							⊢ ( 𝑀  ∈  𝑉  →  ( ∀ 𝑗  ∈  ( 𝐴  ∪  { 𝑀 } ) ( 𝑀  =  𝑗  ∨  ( ⦋ 𝑀  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑗  /  𝑥 ⦌ 𝐵 )  =  ∅ )  ↔  ( ∀ 𝑗  ∈  𝐴 ( 𝑀  =  𝑗  ∨  ( ⦋ 𝑀  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑗  /  𝑥 ⦌ 𝐵 )  =  ∅ )  ∧  ( 𝑀  =  𝑀  ∨  ( ⦋ 𝑀  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑀  /  𝑥 ⦌ 𝐵 )  =  ∅ ) ) ) )  | 
						
						
							| 23 | 
							
								
							 | 
							eqid | 
							⊢ 𝑀  =  𝑀  | 
						
						
							| 24 | 
							
								23
							 | 
							orci | 
							⊢ ( 𝑀  =  𝑀  ∨  ( ⦋ 𝑀  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑀  /  𝑥 ⦌ 𝐵 )  =  ∅ )  | 
						
						
							| 25 | 
							
								24
							 | 
							biantru | 
							⊢ ( ∀ 𝑗  ∈  𝐴 ( 𝑀  =  𝑗  ∨  ( ⦋ 𝑀  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑗  /  𝑥 ⦌ 𝐵 )  =  ∅ )  ↔  ( ∀ 𝑗  ∈  𝐴 ( 𝑀  =  𝑗  ∨  ( ⦋ 𝑀  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑗  /  𝑥 ⦌ 𝐵 )  =  ∅ )  ∧  ( 𝑀  =  𝑀  ∨  ( ⦋ 𝑀  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑀  /  𝑥 ⦌ 𝐵 )  =  ∅ ) ) )  | 
						
						
							| 26 | 
							
								22 25
							 | 
							bitr4di | 
							⊢ ( 𝑀  ∈  𝑉  →  ( ∀ 𝑗  ∈  ( 𝐴  ∪  { 𝑀 } ) ( 𝑀  =  𝑗  ∨  ( ⦋ 𝑀  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑗  /  𝑥 ⦌ 𝐵 )  =  ∅ )  ↔  ∀ 𝑗  ∈  𝐴 ( 𝑀  =  𝑗  ∨  ( ⦋ 𝑀  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑗  /  𝑥 ⦌ 𝐵 )  =  ∅ ) ) )  | 
						
						
							| 27 | 
							
								17 26
							 | 
							anbi12d | 
							⊢ ( 𝑀  ∈  𝑉  →  ( ( ∀ 𝑖  ∈  𝐴 ∀ 𝑗  ∈  ( 𝐴  ∪  { 𝑀 } ) ( 𝑖  =  𝑗  ∨  ( ⦋ 𝑖  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑗  /  𝑥 ⦌ 𝐵 )  =  ∅ )  ∧  ∀ 𝑗  ∈  ( 𝐴  ∪  { 𝑀 } ) ( 𝑀  =  𝑗  ∨  ( ⦋ 𝑀  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑗  /  𝑥 ⦌ 𝐵 )  =  ∅ ) )  ↔  ( ∀ 𝑖  ∈  𝐴 ( ∀ 𝑗  ∈  𝐴 ( 𝑖  =  𝑗  ∨  ( ⦋ 𝑖  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑗  /  𝑥 ⦌ 𝐵 )  =  ∅ )  ∧  ( 𝑖  =  𝑀  ∨  ( ⦋ 𝑖  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑀  /  𝑥 ⦌ 𝐵 )  =  ∅ ) )  ∧  ∀ 𝑗  ∈  𝐴 ( 𝑀  =  𝑗  ∨  ( ⦋ 𝑀  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑗  /  𝑥 ⦌ 𝐵 )  =  ∅ ) ) ) )  | 
						
						
							| 28 | 
							
								10 27
							 | 
							bitrd | 
							⊢ ( 𝑀  ∈  𝑉  →  ( Disj  𝑥  ∈  ( 𝐴  ∪  { 𝑀 } ) 𝐵  ↔  ( ∀ 𝑖  ∈  𝐴 ( ∀ 𝑗  ∈  𝐴 ( 𝑖  =  𝑗  ∨  ( ⦋ 𝑖  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑗  /  𝑥 ⦌ 𝐵 )  =  ∅ )  ∧  ( 𝑖  =  𝑀  ∨  ( ⦋ 𝑖  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑀  /  𝑥 ⦌ 𝐵 )  =  ∅ ) )  ∧  ∀ 𝑗  ∈  𝐴 ( 𝑀  =  𝑗  ∨  ( ⦋ 𝑀  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑗  /  𝑥 ⦌ 𝐵 )  =  ∅ ) ) ) )  | 
						
						
							| 29 | 
							
								
							 | 
							r19.26 | 
							⊢ ( ∀ 𝑖  ∈  𝐴 ( ∀ 𝑗  ∈  𝐴 ( 𝑖  =  𝑗  ∨  ( ⦋ 𝑖  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑗  /  𝑥 ⦌ 𝐵 )  =  ∅ )  ∧  ( 𝑖  =  𝑀  ∨  ( ⦋ 𝑖  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑀  /  𝑥 ⦌ 𝐵 )  =  ∅ ) )  ↔  ( ∀ 𝑖  ∈  𝐴 ∀ 𝑗  ∈  𝐴 ( 𝑖  =  𝑗  ∨  ( ⦋ 𝑖  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑗  /  𝑥 ⦌ 𝐵 )  =  ∅ )  ∧  ∀ 𝑖  ∈  𝐴 ( 𝑖  =  𝑀  ∨  ( ⦋ 𝑖  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑀  /  𝑥 ⦌ 𝐵 )  =  ∅ ) ) )  | 
						
						
							| 30 | 
							
								
							 | 
							disjors | 
							⊢ ( Disj  𝑥  ∈  𝐴 𝐵  ↔  ∀ 𝑖  ∈  𝐴 ∀ 𝑗  ∈  𝐴 ( 𝑖  =  𝑗  ∨  ( ⦋ 𝑖  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑗  /  𝑥 ⦌ 𝐵 )  =  ∅ ) )  | 
						
						
							| 31 | 
							
								30
							 | 
							anbi1i | 
							⊢ ( ( Disj  𝑥  ∈  𝐴 𝐵  ∧  ∀ 𝑖  ∈  𝐴 ( 𝑖  =  𝑀  ∨  ( ⦋ 𝑖  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑀  /  𝑥 ⦌ 𝐵 )  =  ∅ ) )  ↔  ( ∀ 𝑖  ∈  𝐴 ∀ 𝑗  ∈  𝐴 ( 𝑖  =  𝑗  ∨  ( ⦋ 𝑖  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑗  /  𝑥 ⦌ 𝐵 )  =  ∅ )  ∧  ∀ 𝑖  ∈  𝐴 ( 𝑖  =  𝑀  ∨  ( ⦋ 𝑖  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑀  /  𝑥 ⦌ 𝐵 )  =  ∅ ) ) )  | 
						
						
							| 32 | 
							
								29 31
							 | 
							bitr4i | 
							⊢ ( ∀ 𝑖  ∈  𝐴 ( ∀ 𝑗  ∈  𝐴 ( 𝑖  =  𝑗  ∨  ( ⦋ 𝑖  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑗  /  𝑥 ⦌ 𝐵 )  =  ∅ )  ∧  ( 𝑖  =  𝑀  ∨  ( ⦋ 𝑖  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑀  /  𝑥 ⦌ 𝐵 )  =  ∅ ) )  ↔  ( Disj  𝑥  ∈  𝐴 𝐵  ∧  ∀ 𝑖  ∈  𝐴 ( 𝑖  =  𝑀  ∨  ( ⦋ 𝑖  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑀  /  𝑥 ⦌ 𝐵 )  =  ∅ ) ) )  | 
						
						
							| 33 | 
							
								32
							 | 
							anbi1i | 
							⊢ ( ( ∀ 𝑖  ∈  𝐴 ( ∀ 𝑗  ∈  𝐴 ( 𝑖  =  𝑗  ∨  ( ⦋ 𝑖  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑗  /  𝑥 ⦌ 𝐵 )  =  ∅ )  ∧  ( 𝑖  =  𝑀  ∨  ( ⦋ 𝑖  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑀  /  𝑥 ⦌ 𝐵 )  =  ∅ ) )  ∧  ∀ 𝑗  ∈  𝐴 ( 𝑀  =  𝑗  ∨  ( ⦋ 𝑀  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑗  /  𝑥 ⦌ 𝐵 )  =  ∅ ) )  ↔  ( ( Disj  𝑥  ∈  𝐴 𝐵  ∧  ∀ 𝑖  ∈  𝐴 ( 𝑖  =  𝑀  ∨  ( ⦋ 𝑖  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑀  /  𝑥 ⦌ 𝐵 )  =  ∅ ) )  ∧  ∀ 𝑗  ∈  𝐴 ( 𝑀  =  𝑗  ∨  ( ⦋ 𝑀  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑗  /  𝑥 ⦌ 𝐵 )  =  ∅ ) ) )  | 
						
						
							| 34 | 
							
								28 33
							 | 
							bitrdi | 
							⊢ ( 𝑀  ∈  𝑉  →  ( Disj  𝑥  ∈  ( 𝐴  ∪  { 𝑀 } ) 𝐵  ↔  ( ( Disj  𝑥  ∈  𝐴 𝐵  ∧  ∀ 𝑖  ∈  𝐴 ( 𝑖  =  𝑀  ∨  ( ⦋ 𝑖  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑀  /  𝑥 ⦌ 𝐵 )  =  ∅ ) )  ∧  ∀ 𝑗  ∈  𝐴 ( 𝑀  =  𝑗  ∨  ( ⦋ 𝑀  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑗  /  𝑥 ⦌ 𝐵 )  =  ∅ ) ) ) )  | 
						
						
							| 35 | 
							
								34
							 | 
							adantr | 
							⊢ ( ( 𝑀  ∈  𝑉  ∧  ¬  𝑀  ∈  𝐴 )  →  ( Disj  𝑥  ∈  ( 𝐴  ∪  { 𝑀 } ) 𝐵  ↔  ( ( Disj  𝑥  ∈  𝐴 𝐵  ∧  ∀ 𝑖  ∈  𝐴 ( 𝑖  =  𝑀  ∨  ( ⦋ 𝑖  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑀  /  𝑥 ⦌ 𝐵 )  =  ∅ ) )  ∧  ∀ 𝑗  ∈  𝐴 ( 𝑀  =  𝑗  ∨  ( ⦋ 𝑀  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑗  /  𝑥 ⦌ 𝐵 )  =  ∅ ) ) ) )  | 
						
						
							| 36 | 
							
								
							 | 
							orcom | 
							⊢ ( ( ( ⦋ 𝑖  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑀  /  𝑥 ⦌ 𝐵 )  =  ∅  ∨  𝑖  =  𝑀 )  ↔  ( 𝑖  =  𝑀  ∨  ( ⦋ 𝑖  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑀  /  𝑥 ⦌ 𝐵 )  =  ∅ ) )  | 
						
						
							| 37 | 
							
								36
							 | 
							ralbii | 
							⊢ ( ∀ 𝑖  ∈  𝐴 ( ( ⦋ 𝑖  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑀  /  𝑥 ⦌ 𝐵 )  =  ∅  ∨  𝑖  =  𝑀 )  ↔  ∀ 𝑖  ∈  𝐴 ( 𝑖  =  𝑀  ∨  ( ⦋ 𝑖  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑀  /  𝑥 ⦌ 𝐵 )  =  ∅ ) )  | 
						
						
							| 38 | 
							
								
							 | 
							r19.30 | 
							⊢ ( ∀ 𝑖  ∈  𝐴 ( ( ⦋ 𝑖  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑀  /  𝑥 ⦌ 𝐵 )  =  ∅  ∨  𝑖  =  𝑀 )  →  ( ∀ 𝑖  ∈  𝐴 ( ⦋ 𝑖  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑀  /  𝑥 ⦌ 𝐵 )  =  ∅  ∨  ∃ 𝑖  ∈  𝐴 𝑖  =  𝑀 ) )  | 
						
						
							| 39 | 
							
								
							 | 
							risset | 
							⊢ ( 𝑀  ∈  𝐴  ↔  ∃ 𝑖  ∈  𝐴 𝑖  =  𝑀 )  | 
						
						
							| 40 | 
							
								
							 | 
							biorf | 
							⊢ ( ¬  ∃ 𝑖  ∈  𝐴 𝑖  =  𝑀  →  ( ∀ 𝑖  ∈  𝐴 ( ⦋ 𝑖  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑀  /  𝑥 ⦌ 𝐵 )  =  ∅  ↔  ( ∃ 𝑖  ∈  𝐴 𝑖  =  𝑀  ∨  ∀ 𝑖  ∈  𝐴 ( ⦋ 𝑖  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑀  /  𝑥 ⦌ 𝐵 )  =  ∅ ) ) )  | 
						
						
							| 41 | 
							
								39 40
							 | 
							sylnbi | 
							⊢ ( ¬  𝑀  ∈  𝐴  →  ( ∀ 𝑖  ∈  𝐴 ( ⦋ 𝑖  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑀  /  𝑥 ⦌ 𝐵 )  =  ∅  ↔  ( ∃ 𝑖  ∈  𝐴 𝑖  =  𝑀  ∨  ∀ 𝑖  ∈  𝐴 ( ⦋ 𝑖  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑀  /  𝑥 ⦌ 𝐵 )  =  ∅ ) ) )  | 
						
						
							| 42 | 
							
								41
							 | 
							adantl | 
							⊢ ( ( 𝑀  ∈  𝑉  ∧  ¬  𝑀  ∈  𝐴 )  →  ( ∀ 𝑖  ∈  𝐴 ( ⦋ 𝑖  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑀  /  𝑥 ⦌ 𝐵 )  =  ∅  ↔  ( ∃ 𝑖  ∈  𝐴 𝑖  =  𝑀  ∨  ∀ 𝑖  ∈  𝐴 ( ⦋ 𝑖  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑀  /  𝑥 ⦌ 𝐵 )  =  ∅ ) ) )  | 
						
						
							| 43 | 
							
								
							 | 
							orcom | 
							⊢ ( ( ∃ 𝑖  ∈  𝐴 𝑖  =  𝑀  ∨  ∀ 𝑖  ∈  𝐴 ( ⦋ 𝑖  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑀  /  𝑥 ⦌ 𝐵 )  =  ∅ )  ↔  ( ∀ 𝑖  ∈  𝐴 ( ⦋ 𝑖  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑀  /  𝑥 ⦌ 𝐵 )  =  ∅  ∨  ∃ 𝑖  ∈  𝐴 𝑖  =  𝑀 ) )  | 
						
						
							| 44 | 
							
								42 43
							 | 
							bitrdi | 
							⊢ ( ( 𝑀  ∈  𝑉  ∧  ¬  𝑀  ∈  𝐴 )  →  ( ∀ 𝑖  ∈  𝐴 ( ⦋ 𝑖  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑀  /  𝑥 ⦌ 𝐵 )  =  ∅  ↔  ( ∀ 𝑖  ∈  𝐴 ( ⦋ 𝑖  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑀  /  𝑥 ⦌ 𝐵 )  =  ∅  ∨  ∃ 𝑖  ∈  𝐴 𝑖  =  𝑀 ) ) )  | 
						
						
							| 45 | 
							
								38 44
							 | 
							imbitrrid | 
							⊢ ( ( 𝑀  ∈  𝑉  ∧  ¬  𝑀  ∈  𝐴 )  →  ( ∀ 𝑖  ∈  𝐴 ( ( ⦋ 𝑖  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑀  /  𝑥 ⦌ 𝐵 )  =  ∅  ∨  𝑖  =  𝑀 )  →  ∀ 𝑖  ∈  𝐴 ( ⦋ 𝑖  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑀  /  𝑥 ⦌ 𝐵 )  =  ∅ ) )  | 
						
						
							| 46 | 
							
								37 45
							 | 
							biimtrrid | 
							⊢ ( ( 𝑀  ∈  𝑉  ∧  ¬  𝑀  ∈  𝐴 )  →  ( ∀ 𝑖  ∈  𝐴 ( 𝑖  =  𝑀  ∨  ( ⦋ 𝑖  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑀  /  𝑥 ⦌ 𝐵 )  =  ∅ )  →  ∀ 𝑖  ∈  𝐴 ( ⦋ 𝑖  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑀  /  𝑥 ⦌ 𝐵 )  =  ∅ ) )  | 
						
						
							| 47 | 
							
								
							 | 
							olc | 
							⊢ ( ( ⦋ 𝑖  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑀  /  𝑥 ⦌ 𝐵 )  =  ∅  →  ( 𝑖  =  𝑀  ∨  ( ⦋ 𝑖  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑀  /  𝑥 ⦌ 𝐵 )  =  ∅ ) )  | 
						
						
							| 48 | 
							
								47
							 | 
							ralimi | 
							⊢ ( ∀ 𝑖  ∈  𝐴 ( ⦋ 𝑖  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑀  /  𝑥 ⦌ 𝐵 )  =  ∅  →  ∀ 𝑖  ∈  𝐴 ( 𝑖  =  𝑀  ∨  ( ⦋ 𝑖  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑀  /  𝑥 ⦌ 𝐵 )  =  ∅ ) )  | 
						
						
							| 49 | 
							
								46 48
							 | 
							impbid1 | 
							⊢ ( ( 𝑀  ∈  𝑉  ∧  ¬  𝑀  ∈  𝐴 )  →  ( ∀ 𝑖  ∈  𝐴 ( 𝑖  =  𝑀  ∨  ( ⦋ 𝑖  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑀  /  𝑥 ⦌ 𝐵 )  =  ∅ )  ↔  ∀ 𝑖  ∈  𝐴 ( ⦋ 𝑖  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑀  /  𝑥 ⦌ 𝐵 )  =  ∅ ) )  | 
						
						
							| 50 | 
							
								
							 | 
							nfv | 
							⊢ Ⅎ 𝑖 ( 𝐵  ∩  𝐶 )  =  ∅  | 
						
						
							| 51 | 
							
								
							 | 
							nfcsb1v | 
							⊢ Ⅎ 𝑥 ⦋ 𝑖  /  𝑥 ⦌ 𝐵  | 
						
						
							| 52 | 
							
								
							 | 
							nfcv | 
							⊢ Ⅎ 𝑥 𝐶  | 
						
						
							| 53 | 
							
								51 52
							 | 
							nfin | 
							⊢ Ⅎ 𝑥 ( ⦋ 𝑖  /  𝑥 ⦌ 𝐵  ∩  𝐶 )  | 
						
						
							| 54 | 
							
								53
							 | 
							nfeq1 | 
							⊢ Ⅎ 𝑥 ( ⦋ 𝑖  /  𝑥 ⦌ 𝐵  ∩  𝐶 )  =  ∅  | 
						
						
							| 55 | 
							
								
							 | 
							csbeq1a | 
							⊢ ( 𝑥  =  𝑖  →  𝐵  =  ⦋ 𝑖  /  𝑥 ⦌ 𝐵 )  | 
						
						
							| 56 | 
							
								55
							 | 
							ineq1d | 
							⊢ ( 𝑥  =  𝑖  →  ( 𝐵  ∩  𝐶 )  =  ( ⦋ 𝑖  /  𝑥 ⦌ 𝐵  ∩  𝐶 ) )  | 
						
						
							| 57 | 
							
								56
							 | 
							eqeq1d | 
							⊢ ( 𝑥  =  𝑖  →  ( ( 𝐵  ∩  𝐶 )  =  ∅  ↔  ( ⦋ 𝑖  /  𝑥 ⦌ 𝐵  ∩  𝐶 )  =  ∅ ) )  | 
						
						
							| 58 | 
							
								50 54 57
							 | 
							cbvralw | 
							⊢ ( ∀ 𝑥  ∈  𝐴 ( 𝐵  ∩  𝐶 )  =  ∅  ↔  ∀ 𝑖  ∈  𝐴 ( ⦋ 𝑖  /  𝑥 ⦌ 𝐵  ∩  𝐶 )  =  ∅ )  | 
						
						
							| 59 | 
							
								58
							 | 
							a1i | 
							⊢ ( 𝑀  ∈  𝑉  →  ( ∀ 𝑥  ∈  𝐴 ( 𝐵  ∩  𝐶 )  =  ∅  ↔  ∀ 𝑖  ∈  𝐴 ( ⦋ 𝑖  /  𝑥 ⦌ 𝐵  ∩  𝐶 )  =  ∅ ) )  | 
						
						
							| 60 | 
							
								
							 | 
							ss0b | 
							⊢ ( ∪  𝑥  ∈  𝐴 ( 𝐵  ∩  𝐶 )  ⊆  ∅  ↔  ∪  𝑥  ∈  𝐴 ( 𝐵  ∩  𝐶 )  =  ∅ )  | 
						
						
							| 61 | 
							
								
							 | 
							iunss | 
							⊢ ( ∪  𝑥  ∈  𝐴 ( 𝐵  ∩  𝐶 )  ⊆  ∅  ↔  ∀ 𝑥  ∈  𝐴 ( 𝐵  ∩  𝐶 )  ⊆  ∅ )  | 
						
						
							| 62 | 
							
								
							 | 
							iunin1 | 
							⊢ ∪  𝑥  ∈  𝐴 ( 𝐵  ∩  𝐶 )  =  ( ∪  𝑥  ∈  𝐴 𝐵  ∩  𝐶 )  | 
						
						
							| 63 | 
							
								62
							 | 
							eqeq1i | 
							⊢ ( ∪  𝑥  ∈  𝐴 ( 𝐵  ∩  𝐶 )  =  ∅  ↔  ( ∪  𝑥  ∈  𝐴 𝐵  ∩  𝐶 )  =  ∅ )  | 
						
						
							| 64 | 
							
								60 61 63
							 | 
							3bitr3ri | 
							⊢ ( ( ∪  𝑥  ∈  𝐴 𝐵  ∩  𝐶 )  =  ∅  ↔  ∀ 𝑥  ∈  𝐴 ( 𝐵  ∩  𝐶 )  ⊆  ∅ )  | 
						
						
							| 65 | 
							
								
							 | 
							ss0b | 
							⊢ ( ( 𝐵  ∩  𝐶 )  ⊆  ∅  ↔  ( 𝐵  ∩  𝐶 )  =  ∅ )  | 
						
						
							| 66 | 
							
								65
							 | 
							ralbii | 
							⊢ ( ∀ 𝑥  ∈  𝐴 ( 𝐵  ∩  𝐶 )  ⊆  ∅  ↔  ∀ 𝑥  ∈  𝐴 ( 𝐵  ∩  𝐶 )  =  ∅ )  | 
						
						
							| 67 | 
							
								64 66
							 | 
							bitri | 
							⊢ ( ( ∪  𝑥  ∈  𝐴 𝐵  ∩  𝐶 )  =  ∅  ↔  ∀ 𝑥  ∈  𝐴 ( 𝐵  ∩  𝐶 )  =  ∅ )  | 
						
						
							| 68 | 
							
								67
							 | 
							a1i | 
							⊢ ( 𝑀  ∈  𝑉  →  ( ( ∪  𝑥  ∈  𝐴 𝐵  ∩  𝐶 )  =  ∅  ↔  ∀ 𝑥  ∈  𝐴 ( 𝐵  ∩  𝐶 )  =  ∅ ) )  | 
						
						
							| 69 | 
							
								
							 | 
							nfcvd | 
							⊢ ( 𝑀  ∈  𝑉  →  Ⅎ 𝑥 𝐶 )  | 
						
						
							| 70 | 
							
								69 1
							 | 
							csbiegf | 
							⊢ ( 𝑀  ∈  𝑉  →  ⦋ 𝑀  /  𝑥 ⦌ 𝐵  =  𝐶 )  | 
						
						
							| 71 | 
							
								70
							 | 
							ineq2d | 
							⊢ ( 𝑀  ∈  𝑉  →  ( ⦋ 𝑖  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑀  /  𝑥 ⦌ 𝐵 )  =  ( ⦋ 𝑖  /  𝑥 ⦌ 𝐵  ∩  𝐶 ) )  | 
						
						
							| 72 | 
							
								71
							 | 
							eqeq1d | 
							⊢ ( 𝑀  ∈  𝑉  →  ( ( ⦋ 𝑖  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑀  /  𝑥 ⦌ 𝐵 )  =  ∅  ↔  ( ⦋ 𝑖  /  𝑥 ⦌ 𝐵  ∩  𝐶 )  =  ∅ ) )  | 
						
						
							| 73 | 
							
								72
							 | 
							ralbidv | 
							⊢ ( 𝑀  ∈  𝑉  →  ( ∀ 𝑖  ∈  𝐴 ( ⦋ 𝑖  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑀  /  𝑥 ⦌ 𝐵 )  =  ∅  ↔  ∀ 𝑖  ∈  𝐴 ( ⦋ 𝑖  /  𝑥 ⦌ 𝐵  ∩  𝐶 )  =  ∅ ) )  | 
						
						
							| 74 | 
							
								59 68 73
							 | 
							3bitr4d | 
							⊢ ( 𝑀  ∈  𝑉  →  ( ( ∪  𝑥  ∈  𝐴 𝐵  ∩  𝐶 )  =  ∅  ↔  ∀ 𝑖  ∈  𝐴 ( ⦋ 𝑖  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑀  /  𝑥 ⦌ 𝐵 )  =  ∅ ) )  | 
						
						
							| 75 | 
							
								74
							 | 
							adantr | 
							⊢ ( ( 𝑀  ∈  𝑉  ∧  ¬  𝑀  ∈  𝐴 )  →  ( ( ∪  𝑥  ∈  𝐴 𝐵  ∩  𝐶 )  =  ∅  ↔  ∀ 𝑖  ∈  𝐴 ( ⦋ 𝑖  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑀  /  𝑥 ⦌ 𝐵 )  =  ∅ ) )  | 
						
						
							| 76 | 
							
								49 75
							 | 
							bitr4d | 
							⊢ ( ( 𝑀  ∈  𝑉  ∧  ¬  𝑀  ∈  𝐴 )  →  ( ∀ 𝑖  ∈  𝐴 ( 𝑖  =  𝑀  ∨  ( ⦋ 𝑖  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑀  /  𝑥 ⦌ 𝐵 )  =  ∅ )  ↔  ( ∪  𝑥  ∈  𝐴 𝐵  ∩  𝐶 )  =  ∅ ) )  | 
						
						
							| 77 | 
							
								76
							 | 
							anbi2d | 
							⊢ ( ( 𝑀  ∈  𝑉  ∧  ¬  𝑀  ∈  𝐴 )  →  ( ( Disj  𝑥  ∈  𝐴 𝐵  ∧  ∀ 𝑖  ∈  𝐴 ( 𝑖  =  𝑀  ∨  ( ⦋ 𝑖  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑀  /  𝑥 ⦌ 𝐵 )  =  ∅ ) )  ↔  ( Disj  𝑥  ∈  𝐴 𝐵  ∧  ( ∪  𝑥  ∈  𝐴 𝐵  ∩  𝐶 )  =  ∅ ) ) )  | 
						
						
							| 78 | 
							
								
							 | 
							orcom | 
							⊢ ( ( ( ⦋ 𝑀  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑗  /  𝑥 ⦌ 𝐵 )  =  ∅  ∨  𝑀  =  𝑗 )  ↔  ( 𝑀  =  𝑗  ∨  ( ⦋ 𝑀  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑗  /  𝑥 ⦌ 𝐵 )  =  ∅ ) )  | 
						
						
							| 79 | 
							
								78
							 | 
							ralbii | 
							⊢ ( ∀ 𝑗  ∈  𝐴 ( ( ⦋ 𝑀  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑗  /  𝑥 ⦌ 𝐵 )  =  ∅  ∨  𝑀  =  𝑗 )  ↔  ∀ 𝑗  ∈  𝐴 ( 𝑀  =  𝑗  ∨  ( ⦋ 𝑀  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑗  /  𝑥 ⦌ 𝐵 )  =  ∅ ) )  | 
						
						
							| 80 | 
							
								
							 | 
							r19.30 | 
							⊢ ( ∀ 𝑗  ∈  𝐴 ( ( ⦋ 𝑀  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑗  /  𝑥 ⦌ 𝐵 )  =  ∅  ∨  𝑀  =  𝑗 )  →  ( ∀ 𝑗  ∈  𝐴 ( ⦋ 𝑀  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑗  /  𝑥 ⦌ 𝐵 )  =  ∅  ∨  ∃ 𝑗  ∈  𝐴 𝑀  =  𝑗 ) )  | 
						
						
							| 81 | 
							
								
							 | 
							clel5 | 
							⊢ ( 𝑀  ∈  𝐴  ↔  ∃ 𝑗  ∈  𝐴 𝑀  =  𝑗 )  | 
						
						
							| 82 | 
							
								
							 | 
							biorf | 
							⊢ ( ¬  ∃ 𝑗  ∈  𝐴 𝑀  =  𝑗  →  ( ∀ 𝑗  ∈  𝐴 ( ⦋ 𝑀  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑗  /  𝑥 ⦌ 𝐵 )  =  ∅  ↔  ( ∃ 𝑗  ∈  𝐴 𝑀  =  𝑗  ∨  ∀ 𝑗  ∈  𝐴 ( ⦋ 𝑀  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑗  /  𝑥 ⦌ 𝐵 )  =  ∅ ) ) )  | 
						
						
							| 83 | 
							
								81 82
							 | 
							sylnbi | 
							⊢ ( ¬  𝑀  ∈  𝐴  →  ( ∀ 𝑗  ∈  𝐴 ( ⦋ 𝑀  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑗  /  𝑥 ⦌ 𝐵 )  =  ∅  ↔  ( ∃ 𝑗  ∈  𝐴 𝑀  =  𝑗  ∨  ∀ 𝑗  ∈  𝐴 ( ⦋ 𝑀  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑗  /  𝑥 ⦌ 𝐵 )  =  ∅ ) ) )  | 
						
						
							| 84 | 
							
								83
							 | 
							adantl | 
							⊢ ( ( 𝑀  ∈  𝑉  ∧  ¬  𝑀  ∈  𝐴 )  →  ( ∀ 𝑗  ∈  𝐴 ( ⦋ 𝑀  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑗  /  𝑥 ⦌ 𝐵 )  =  ∅  ↔  ( ∃ 𝑗  ∈  𝐴 𝑀  =  𝑗  ∨  ∀ 𝑗  ∈  𝐴 ( ⦋ 𝑀  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑗  /  𝑥 ⦌ 𝐵 )  =  ∅ ) ) )  | 
						
						
							| 85 | 
							
								
							 | 
							orcom | 
							⊢ ( ( ∃ 𝑗  ∈  𝐴 𝑀  =  𝑗  ∨  ∀ 𝑗  ∈  𝐴 ( ⦋ 𝑀  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑗  /  𝑥 ⦌ 𝐵 )  =  ∅ )  ↔  ( ∀ 𝑗  ∈  𝐴 ( ⦋ 𝑀  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑗  /  𝑥 ⦌ 𝐵 )  =  ∅  ∨  ∃ 𝑗  ∈  𝐴 𝑀  =  𝑗 ) )  | 
						
						
							| 86 | 
							
								84 85
							 | 
							bitrdi | 
							⊢ ( ( 𝑀  ∈  𝑉  ∧  ¬  𝑀  ∈  𝐴 )  →  ( ∀ 𝑗  ∈  𝐴 ( ⦋ 𝑀  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑗  /  𝑥 ⦌ 𝐵 )  =  ∅  ↔  ( ∀ 𝑗  ∈  𝐴 ( ⦋ 𝑀  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑗  /  𝑥 ⦌ 𝐵 )  =  ∅  ∨  ∃ 𝑗  ∈  𝐴 𝑀  =  𝑗 ) ) )  | 
						
						
							| 87 | 
							
								80 86
							 | 
							imbitrrid | 
							⊢ ( ( 𝑀  ∈  𝑉  ∧  ¬  𝑀  ∈  𝐴 )  →  ( ∀ 𝑗  ∈  𝐴 ( ( ⦋ 𝑀  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑗  /  𝑥 ⦌ 𝐵 )  =  ∅  ∨  𝑀  =  𝑗 )  →  ∀ 𝑗  ∈  𝐴 ( ⦋ 𝑀  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑗  /  𝑥 ⦌ 𝐵 )  =  ∅ ) )  | 
						
						
							| 88 | 
							
								79 87
							 | 
							biimtrrid | 
							⊢ ( ( 𝑀  ∈  𝑉  ∧  ¬  𝑀  ∈  𝐴 )  →  ( ∀ 𝑗  ∈  𝐴 ( 𝑀  =  𝑗  ∨  ( ⦋ 𝑀  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑗  /  𝑥 ⦌ 𝐵 )  =  ∅ )  →  ∀ 𝑗  ∈  𝐴 ( ⦋ 𝑀  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑗  /  𝑥 ⦌ 𝐵 )  =  ∅ ) )  | 
						
						
							| 89 | 
							
								
							 | 
							olc | 
							⊢ ( ( ⦋ 𝑀  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑗  /  𝑥 ⦌ 𝐵 )  =  ∅  →  ( 𝑀  =  𝑗  ∨  ( ⦋ 𝑀  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑗  /  𝑥 ⦌ 𝐵 )  =  ∅ ) )  | 
						
						
							| 90 | 
							
								89
							 | 
							ralimi | 
							⊢ ( ∀ 𝑗  ∈  𝐴 ( ⦋ 𝑀  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑗  /  𝑥 ⦌ 𝐵 )  =  ∅  →  ∀ 𝑗  ∈  𝐴 ( 𝑀  =  𝑗  ∨  ( ⦋ 𝑀  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑗  /  𝑥 ⦌ 𝐵 )  =  ∅ ) )  | 
						
						
							| 91 | 
							
								88 90
							 | 
							impbid1 | 
							⊢ ( ( 𝑀  ∈  𝑉  ∧  ¬  𝑀  ∈  𝐴 )  →  ( ∀ 𝑗  ∈  𝐴 ( 𝑀  =  𝑗  ∨  ( ⦋ 𝑀  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑗  /  𝑥 ⦌ 𝐵 )  =  ∅ )  ↔  ∀ 𝑗  ∈  𝐴 ( ⦋ 𝑀  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑗  /  𝑥 ⦌ 𝐵 )  =  ∅ ) )  | 
						
						
							| 92 | 
							
								
							 | 
							nfv | 
							⊢ Ⅎ 𝑗 ( 𝐵  ∩  𝐶 )  =  ∅  | 
						
						
							| 93 | 
							
								
							 | 
							nfcsb1v | 
							⊢ Ⅎ 𝑥 ⦋ 𝑗  /  𝑥 ⦌ 𝐵  | 
						
						
							| 94 | 
							
								93 52
							 | 
							nfin | 
							⊢ Ⅎ 𝑥 ( ⦋ 𝑗  /  𝑥 ⦌ 𝐵  ∩  𝐶 )  | 
						
						
							| 95 | 
							
								94
							 | 
							nfeq1 | 
							⊢ Ⅎ 𝑥 ( ⦋ 𝑗  /  𝑥 ⦌ 𝐵  ∩  𝐶 )  =  ∅  | 
						
						
							| 96 | 
							
								
							 | 
							csbeq1a | 
							⊢ ( 𝑥  =  𝑗  →  𝐵  =  ⦋ 𝑗  /  𝑥 ⦌ 𝐵 )  | 
						
						
							| 97 | 
							
								96
							 | 
							ineq1d | 
							⊢ ( 𝑥  =  𝑗  →  ( 𝐵  ∩  𝐶 )  =  ( ⦋ 𝑗  /  𝑥 ⦌ 𝐵  ∩  𝐶 ) )  | 
						
						
							| 98 | 
							
								97
							 | 
							eqeq1d | 
							⊢ ( 𝑥  =  𝑗  →  ( ( 𝐵  ∩  𝐶 )  =  ∅  ↔  ( ⦋ 𝑗  /  𝑥 ⦌ 𝐵  ∩  𝐶 )  =  ∅ ) )  | 
						
						
							| 99 | 
							
								92 95 98
							 | 
							cbvralw | 
							⊢ ( ∀ 𝑥  ∈  𝐴 ( 𝐵  ∩  𝐶 )  =  ∅  ↔  ∀ 𝑗  ∈  𝐴 ( ⦋ 𝑗  /  𝑥 ⦌ 𝐵  ∩  𝐶 )  =  ∅ )  | 
						
						
							| 100 | 
							
								99
							 | 
							a1i | 
							⊢ ( 𝑀  ∈  𝑉  →  ( ∀ 𝑥  ∈  𝐴 ( 𝐵  ∩  𝐶 )  =  ∅  ↔  ∀ 𝑗  ∈  𝐴 ( ⦋ 𝑗  /  𝑥 ⦌ 𝐵  ∩  𝐶 )  =  ∅ ) )  | 
						
						
							| 101 | 
							
								
							 | 
							incom | 
							⊢ ( ⦋ 𝑗  /  𝑥 ⦌ 𝐵  ∩  𝐶 )  =  ( 𝐶  ∩  ⦋ 𝑗  /  𝑥 ⦌ 𝐵 )  | 
						
						
							| 102 | 
							
								101
							 | 
							eqeq1i | 
							⊢ ( ( ⦋ 𝑗  /  𝑥 ⦌ 𝐵  ∩  𝐶 )  =  ∅  ↔  ( 𝐶  ∩  ⦋ 𝑗  /  𝑥 ⦌ 𝐵 )  =  ∅ )  | 
						
						
							| 103 | 
							
								102
							 | 
							ralbii | 
							⊢ ( ∀ 𝑗  ∈  𝐴 ( ⦋ 𝑗  /  𝑥 ⦌ 𝐵  ∩  𝐶 )  =  ∅  ↔  ∀ 𝑗  ∈  𝐴 ( 𝐶  ∩  ⦋ 𝑗  /  𝑥 ⦌ 𝐵 )  =  ∅ )  | 
						
						
							| 104 | 
							
								100 103
							 | 
							bitrdi | 
							⊢ ( 𝑀  ∈  𝑉  →  ( ∀ 𝑥  ∈  𝐴 ( 𝐵  ∩  𝐶 )  =  ∅  ↔  ∀ 𝑗  ∈  𝐴 ( 𝐶  ∩  ⦋ 𝑗  /  𝑥 ⦌ 𝐵 )  =  ∅ ) )  | 
						
						
							| 105 | 
							
								70
							 | 
							ineq1d | 
							⊢ ( 𝑀  ∈  𝑉  →  ( ⦋ 𝑀  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑗  /  𝑥 ⦌ 𝐵 )  =  ( 𝐶  ∩  ⦋ 𝑗  /  𝑥 ⦌ 𝐵 ) )  | 
						
						
							| 106 | 
							
								105
							 | 
							eqeq1d | 
							⊢ ( 𝑀  ∈  𝑉  →  ( ( ⦋ 𝑀  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑗  /  𝑥 ⦌ 𝐵 )  =  ∅  ↔  ( 𝐶  ∩  ⦋ 𝑗  /  𝑥 ⦌ 𝐵 )  =  ∅ ) )  | 
						
						
							| 107 | 
							
								106
							 | 
							ralbidv | 
							⊢ ( 𝑀  ∈  𝑉  →  ( ∀ 𝑗  ∈  𝐴 ( ⦋ 𝑀  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑗  /  𝑥 ⦌ 𝐵 )  =  ∅  ↔  ∀ 𝑗  ∈  𝐴 ( 𝐶  ∩  ⦋ 𝑗  /  𝑥 ⦌ 𝐵 )  =  ∅ ) )  | 
						
						
							| 108 | 
							
								104 68 107
							 | 
							3bitr4d | 
							⊢ ( 𝑀  ∈  𝑉  →  ( ( ∪  𝑥  ∈  𝐴 𝐵  ∩  𝐶 )  =  ∅  ↔  ∀ 𝑗  ∈  𝐴 ( ⦋ 𝑀  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑗  /  𝑥 ⦌ 𝐵 )  =  ∅ ) )  | 
						
						
							| 109 | 
							
								108
							 | 
							adantr | 
							⊢ ( ( 𝑀  ∈  𝑉  ∧  ¬  𝑀  ∈  𝐴 )  →  ( ( ∪  𝑥  ∈  𝐴 𝐵  ∩  𝐶 )  =  ∅  ↔  ∀ 𝑗  ∈  𝐴 ( ⦋ 𝑀  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑗  /  𝑥 ⦌ 𝐵 )  =  ∅ ) )  | 
						
						
							| 110 | 
							
								91 109
							 | 
							bitr4d | 
							⊢ ( ( 𝑀  ∈  𝑉  ∧  ¬  𝑀  ∈  𝐴 )  →  ( ∀ 𝑗  ∈  𝐴 ( 𝑀  =  𝑗  ∨  ( ⦋ 𝑀  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑗  /  𝑥 ⦌ 𝐵 )  =  ∅ )  ↔  ( ∪  𝑥  ∈  𝐴 𝐵  ∩  𝐶 )  =  ∅ ) )  | 
						
						
							| 111 | 
							
								77 110
							 | 
							anbi12d | 
							⊢ ( ( 𝑀  ∈  𝑉  ∧  ¬  𝑀  ∈  𝐴 )  →  ( ( ( Disj  𝑥  ∈  𝐴 𝐵  ∧  ∀ 𝑖  ∈  𝐴 ( 𝑖  =  𝑀  ∨  ( ⦋ 𝑖  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑀  /  𝑥 ⦌ 𝐵 )  =  ∅ ) )  ∧  ∀ 𝑗  ∈  𝐴 ( 𝑀  =  𝑗  ∨  ( ⦋ 𝑀  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑗  /  𝑥 ⦌ 𝐵 )  =  ∅ ) )  ↔  ( ( Disj  𝑥  ∈  𝐴 𝐵  ∧  ( ∪  𝑥  ∈  𝐴 𝐵  ∩  𝐶 )  =  ∅ )  ∧  ( ∪  𝑥  ∈  𝐴 𝐵  ∩  𝐶 )  =  ∅ ) ) )  | 
						
						
							| 112 | 
							
								
							 | 
							anass | 
							⊢ ( ( ( Disj  𝑥  ∈  𝐴 𝐵  ∧  ( ∪  𝑥  ∈  𝐴 𝐵  ∩  𝐶 )  =  ∅ )  ∧  ( ∪  𝑥  ∈  𝐴 𝐵  ∩  𝐶 )  =  ∅ )  ↔  ( Disj  𝑥  ∈  𝐴 𝐵  ∧  ( ( ∪  𝑥  ∈  𝐴 𝐵  ∩  𝐶 )  =  ∅  ∧  ( ∪  𝑥  ∈  𝐴 𝐵  ∩  𝐶 )  =  ∅ ) ) )  | 
						
						
							| 113 | 
							
								
							 | 
							anidm | 
							⊢ ( ( ( ∪  𝑥  ∈  𝐴 𝐵  ∩  𝐶 )  =  ∅  ∧  ( ∪  𝑥  ∈  𝐴 𝐵  ∩  𝐶 )  =  ∅ )  ↔  ( ∪  𝑥  ∈  𝐴 𝐵  ∩  𝐶 )  =  ∅ )  | 
						
						
							| 114 | 
							
								113
							 | 
							anbi2i | 
							⊢ ( ( Disj  𝑥  ∈  𝐴 𝐵  ∧  ( ( ∪  𝑥  ∈  𝐴 𝐵  ∩  𝐶 )  =  ∅  ∧  ( ∪  𝑥  ∈  𝐴 𝐵  ∩  𝐶 )  =  ∅ ) )  ↔  ( Disj  𝑥  ∈  𝐴 𝐵  ∧  ( ∪  𝑥  ∈  𝐴 𝐵  ∩  𝐶 )  =  ∅ ) )  | 
						
						
							| 115 | 
							
								112 114
							 | 
							bitri | 
							⊢ ( ( ( Disj  𝑥  ∈  𝐴 𝐵  ∧  ( ∪  𝑥  ∈  𝐴 𝐵  ∩  𝐶 )  =  ∅ )  ∧  ( ∪  𝑥  ∈  𝐴 𝐵  ∩  𝐶 )  =  ∅ )  ↔  ( Disj  𝑥  ∈  𝐴 𝐵  ∧  ( ∪  𝑥  ∈  𝐴 𝐵  ∩  𝐶 )  =  ∅ ) )  | 
						
						
							| 116 | 
							
								111 115
							 | 
							bitrdi | 
							⊢ ( ( 𝑀  ∈  𝑉  ∧  ¬  𝑀  ∈  𝐴 )  →  ( ( ( Disj  𝑥  ∈  𝐴 𝐵  ∧  ∀ 𝑖  ∈  𝐴 ( 𝑖  =  𝑀  ∨  ( ⦋ 𝑖  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑀  /  𝑥 ⦌ 𝐵 )  =  ∅ ) )  ∧  ∀ 𝑗  ∈  𝐴 ( 𝑀  =  𝑗  ∨  ( ⦋ 𝑀  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑗  /  𝑥 ⦌ 𝐵 )  =  ∅ ) )  ↔  ( Disj  𝑥  ∈  𝐴 𝐵  ∧  ( ∪  𝑥  ∈  𝐴 𝐵  ∩  𝐶 )  =  ∅ ) ) )  | 
						
						
							| 117 | 
							
								35 116
							 | 
							bitrd | 
							⊢ ( ( 𝑀  ∈  𝑉  ∧  ¬  𝑀  ∈  𝐴 )  →  ( Disj  𝑥  ∈  ( 𝐴  ∪  { 𝑀 } ) 𝐵  ↔  ( Disj  𝑥  ∈  𝐴 𝐵  ∧  ( ∪  𝑥  ∈  𝐴 𝐵  ∩  𝐶 )  =  ∅ ) ) )  |