Metamath Proof Explorer


Theorem disjx0

Description: An empty collection is disjoint. (Contributed by Mario Carneiro, 14-Nov-2016)

Ref Expression
Assertion disjx0 Disj 𝑥 ∈ ∅ 𝐵

Proof

Step Hyp Ref Expression
1 0ss ∅ ⊆ { ∅ }
2 disjxsn Disj 𝑥 ∈ { ∅ } 𝐵
3 disjss1 ( ∅ ⊆ { ∅ } → ( Disj 𝑥 ∈ { ∅ } 𝐵Disj 𝑥 ∈ ∅ 𝐵 ) )
4 1 2 3 mp2 Disj 𝑥 ∈ ∅ 𝐵