Metamath Proof Explorer


Theorem disjxiun

Description: An indexed union of a disjoint collection of disjoint collections is disjoint if each component is disjoint, and the disjoint unions in the collection are also disjoint. Note that B ( y ) and C ( x ) may have the displayed free variables. (Contributed by Mario Carneiro, 14-Nov-2016) (Proof shortened by JJ, 27-May-2021)

Ref Expression
Assertion disjxiun ( Disj 𝑦𝐴 𝐵 → ( Disj 𝑥 𝑦𝐴 𝐵 𝐶 ↔ ( ∀ 𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶 ) ) )

Proof

Step Hyp Ref Expression
1 nfiu1 𝑦 𝑦𝐴 𝐵
2 nfcv 𝑦 𝐶
3 1 2 nfdisjw 𝑦 Disj 𝑥 𝑦𝐴 𝐵 𝐶
4 disjss1 ( 𝐵 𝑦𝐴 𝐵 → ( Disj 𝑥 𝑦𝐴 𝐵 𝐶Disj 𝑥𝐵 𝐶 ) )
5 ssiun2 ( 𝑦𝐴𝐵 𝑦𝐴 𝐵 )
6 4 5 syl11 ( Disj 𝑥 𝑦𝐴 𝐵 𝐶 → ( 𝑦𝐴Disj 𝑥𝐵 𝐶 ) )
7 3 6 ralrimi ( Disj 𝑥 𝑦𝐴 𝐵 𝐶 → ∀ 𝑦𝐴 Disj 𝑥𝐵 𝐶 )
8 7 a1i ( Disj 𝑦𝐴 𝐵 → ( Disj 𝑥 𝑦𝐴 𝐵 𝐶 → ∀ 𝑦𝐴 Disj 𝑥𝐵 𝐶 ) )
9 simplr ( ( ( Disj 𝑦𝐴 𝐵Disj 𝑥 𝑦𝐴 𝐵 𝐶 ) ∧ ( ( 𝑢𝐴𝑣𝐴 ) ∧ ¬ 𝑢 = 𝑣 ) ) → Disj 𝑥 𝑦𝐴 𝐵 𝐶 )
10 ssiun2 ( 𝑢𝐴 𝑢 / 𝑦 𝐵 𝑢𝐴 𝑢 / 𝑦 𝐵 )
11 nfcv 𝑢 𝐵
12 nfcsb1v 𝑦 𝑢 / 𝑦 𝐵
13 csbeq1a ( 𝑦 = 𝑢𝐵 = 𝑢 / 𝑦 𝐵 )
14 11 12 13 cbviun 𝑦𝐴 𝐵 = 𝑢𝐴 𝑢 / 𝑦 𝐵
15 10 14 sseqtrrdi ( 𝑢𝐴 𝑢 / 𝑦 𝐵 𝑦𝐴 𝐵 )
16 15 adantr ( ( 𝑢𝐴𝑣𝐴 ) → 𝑢 / 𝑦 𝐵 𝑦𝐴 𝐵 )
17 16 ad2antrl ( ( ( Disj 𝑦𝐴 𝐵Disj 𝑥 𝑦𝐴 𝐵 𝐶 ) ∧ ( ( 𝑢𝐴𝑣𝐴 ) ∧ ¬ 𝑢 = 𝑣 ) ) → 𝑢 / 𝑦 𝐵 𝑦𝐴 𝐵 )
18 csbeq1 ( 𝑢 = 𝑣 𝑢 / 𝑦 𝐵 = 𝑣 / 𝑦 𝐵 )
19 18 sseq1d ( 𝑢 = 𝑣 → ( 𝑢 / 𝑦 𝐵 𝑦𝐴 𝐵 𝑣 / 𝑦 𝐵 𝑦𝐴 𝐵 ) )
20 19 15 vtoclga ( 𝑣𝐴 𝑣 / 𝑦 𝐵 𝑦𝐴 𝐵 )
21 20 adantl ( ( 𝑢𝐴𝑣𝐴 ) → 𝑣 / 𝑦 𝐵 𝑦𝐴 𝐵 )
22 21 ad2antrl ( ( ( Disj 𝑦𝐴 𝐵Disj 𝑥 𝑦𝐴 𝐵 𝐶 ) ∧ ( ( 𝑢𝐴𝑣𝐴 ) ∧ ¬ 𝑢 = 𝑣 ) ) → 𝑣 / 𝑦 𝐵 𝑦𝐴 𝐵 )
23 11 12 13 cbvdisj ( Disj 𝑦𝐴 𝐵Disj 𝑢𝐴 𝑢 / 𝑦 𝐵 )
24 18 disjor ( Disj 𝑢𝐴 𝑢 / 𝑦 𝐵 ↔ ∀ 𝑢𝐴𝑣𝐴 ( 𝑢 = 𝑣 ∨ ( 𝑢 / 𝑦 𝐵 𝑣 / 𝑦 𝐵 ) = ∅ ) )
25 23 24 sylbb ( Disj 𝑦𝐴 𝐵 → ∀ 𝑢𝐴𝑣𝐴 ( 𝑢 = 𝑣 ∨ ( 𝑢 / 𝑦 𝐵 𝑣 / 𝑦 𝐵 ) = ∅ ) )
26 rsp2 ( ∀ 𝑢𝐴𝑣𝐴 ( 𝑢 = 𝑣 ∨ ( 𝑢 / 𝑦 𝐵 𝑣 / 𝑦 𝐵 ) = ∅ ) → ( ( 𝑢𝐴𝑣𝐴 ) → ( 𝑢 = 𝑣 ∨ ( 𝑢 / 𝑦 𝐵 𝑣 / 𝑦 𝐵 ) = ∅ ) ) )
27 25 26 syl ( Disj 𝑦𝐴 𝐵 → ( ( 𝑢𝐴𝑣𝐴 ) → ( 𝑢 = 𝑣 ∨ ( 𝑢 / 𝑦 𝐵 𝑣 / 𝑦 𝐵 ) = ∅ ) ) )
28 27 imp ( ( Disj 𝑦𝐴 𝐵 ∧ ( 𝑢𝐴𝑣𝐴 ) ) → ( 𝑢 = 𝑣 ∨ ( 𝑢 / 𝑦 𝐵 𝑣 / 𝑦 𝐵 ) = ∅ ) )
29 28 ord ( ( Disj 𝑦𝐴 𝐵 ∧ ( 𝑢𝐴𝑣𝐴 ) ) → ( ¬ 𝑢 = 𝑣 → ( 𝑢 / 𝑦 𝐵 𝑣 / 𝑦 𝐵 ) = ∅ ) )
30 29 impr ( ( Disj 𝑦𝐴 𝐵 ∧ ( ( 𝑢𝐴𝑣𝐴 ) ∧ ¬ 𝑢 = 𝑣 ) ) → ( 𝑢 / 𝑦 𝐵 𝑣 / 𝑦 𝐵 ) = ∅ )
31 30 adantlr ( ( ( Disj 𝑦𝐴 𝐵Disj 𝑥 𝑦𝐴 𝐵 𝐶 ) ∧ ( ( 𝑢𝐴𝑣𝐴 ) ∧ ¬ 𝑢 = 𝑣 ) ) → ( 𝑢 / 𝑦 𝐵 𝑣 / 𝑦 𝐵 ) = ∅ )
32 disjiun ( ( Disj 𝑥 𝑦𝐴 𝐵 𝐶 ∧ ( 𝑢 / 𝑦 𝐵 𝑦𝐴 𝐵 𝑣 / 𝑦 𝐵 𝑦𝐴 𝐵 ∧ ( 𝑢 / 𝑦 𝐵 𝑣 / 𝑦 𝐵 ) = ∅ ) ) → ( 𝑥 𝑢 / 𝑦 𝐵 𝐶 𝑥 𝑣 / 𝑦 𝐵 𝐶 ) = ∅ )
33 9 17 22 31 32 syl13anc ( ( ( Disj 𝑦𝐴 𝐵Disj 𝑥 𝑦𝐴 𝐵 𝐶 ) ∧ ( ( 𝑢𝐴𝑣𝐴 ) ∧ ¬ 𝑢 = 𝑣 ) ) → ( 𝑥 𝑢 / 𝑦 𝐵 𝐶 𝑥 𝑣 / 𝑦 𝐵 𝐶 ) = ∅ )
34 33 expr ( ( ( Disj 𝑦𝐴 𝐵Disj 𝑥 𝑦𝐴 𝐵 𝐶 ) ∧ ( 𝑢𝐴𝑣𝐴 ) ) → ( ¬ 𝑢 = 𝑣 → ( 𝑥 𝑢 / 𝑦 𝐵 𝐶 𝑥 𝑣 / 𝑦 𝐵 𝐶 ) = ∅ ) )
35 34 orrd ( ( ( Disj 𝑦𝐴 𝐵Disj 𝑥 𝑦𝐴 𝐵 𝐶 ) ∧ ( 𝑢𝐴𝑣𝐴 ) ) → ( 𝑢 = 𝑣 ∨ ( 𝑥 𝑢 / 𝑦 𝐵 𝐶 𝑥 𝑣 / 𝑦 𝐵 𝐶 ) = ∅ ) )
36 35 ralrimivva ( ( Disj 𝑦𝐴 𝐵Disj 𝑥 𝑦𝐴 𝐵 𝐶 ) → ∀ 𝑢𝐴𝑣𝐴 ( 𝑢 = 𝑣 ∨ ( 𝑥 𝑢 / 𝑦 𝐵 𝐶 𝑥 𝑣 / 𝑦 𝐵 𝐶 ) = ∅ ) )
37 18 iuneq1d ( 𝑢 = 𝑣 𝑥 𝑢 / 𝑦 𝐵 𝐶 = 𝑥 𝑣 / 𝑦 𝐵 𝐶 )
38 37 disjor ( Disj 𝑢𝐴 𝑥 𝑢 / 𝑦 𝐵 𝐶 ↔ ∀ 𝑢𝐴𝑣𝐴 ( 𝑢 = 𝑣 ∨ ( 𝑥 𝑢 / 𝑦 𝐵 𝐶 𝑥 𝑣 / 𝑦 𝐵 𝐶 ) = ∅ ) )
39 36 38 sylibr ( ( Disj 𝑦𝐴 𝐵Disj 𝑥 𝑦𝐴 𝐵 𝐶 ) → Disj 𝑢𝐴 𝑥 𝑢 / 𝑦 𝐵 𝐶 )
40 nfcv 𝑢 𝑥𝐵 𝐶
41 12 2 nfiun 𝑦 𝑥 𝑢 / 𝑦 𝐵 𝐶
42 13 iuneq1d ( 𝑦 = 𝑢 𝑥𝐵 𝐶 = 𝑥 𝑢 / 𝑦 𝐵 𝐶 )
43 40 41 42 cbvdisj ( Disj 𝑦𝐴 𝑥𝐵 𝐶Disj 𝑢𝐴 𝑥 𝑢 / 𝑦 𝐵 𝐶 )
44 39 43 sylibr ( ( Disj 𝑦𝐴 𝐵Disj 𝑥 𝑦𝐴 𝐵 𝐶 ) → Disj 𝑦𝐴 𝑥𝐵 𝐶 )
45 44 ex ( Disj 𝑦𝐴 𝐵 → ( Disj 𝑥 𝑦𝐴 𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶 ) )
46 8 45 jcad ( Disj 𝑦𝐴 𝐵 → ( Disj 𝑥 𝑦𝐴 𝐵 𝐶 → ( ∀ 𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶 ) ) )
47 14 eleq2i ( 𝑟 𝑦𝐴 𝐵𝑟 𝑢𝐴 𝑢 / 𝑦 𝐵 )
48 eliun ( 𝑟 𝑢𝐴 𝑢 / 𝑦 𝐵 ↔ ∃ 𝑢𝐴 𝑟 𝑢 / 𝑦 𝐵 )
49 47 48 bitri ( 𝑟 𝑦𝐴 𝐵 ↔ ∃ 𝑢𝐴 𝑟 𝑢 / 𝑦 𝐵 )
50 nfcv 𝑣 𝐵
51 nfcsb1v 𝑦 𝑣 / 𝑦 𝐵
52 csbeq1a ( 𝑦 = 𝑣𝐵 = 𝑣 / 𝑦 𝐵 )
53 50 51 52 cbviun 𝑦𝐴 𝐵 = 𝑣𝐴 𝑣 / 𝑦 𝐵
54 53 eleq2i ( 𝑠 𝑦𝐴 𝐵𝑠 𝑣𝐴 𝑣 / 𝑦 𝐵 )
55 eliun ( 𝑠 𝑣𝐴 𝑣 / 𝑦 𝐵 ↔ ∃ 𝑣𝐴 𝑠 𝑣 / 𝑦 𝐵 )
56 54 55 bitri ( 𝑠 𝑦𝐴 𝐵 ↔ ∃ 𝑣𝐴 𝑠 𝑣 / 𝑦 𝐵 )
57 49 56 anbi12i ( ( 𝑟 𝑦𝐴 𝐵𝑠 𝑦𝐴 𝐵 ) ↔ ( ∃ 𝑢𝐴 𝑟 𝑢 / 𝑦 𝐵 ∧ ∃ 𝑣𝐴 𝑠 𝑣 / 𝑦 𝐵 ) )
58 reeanv ( ∃ 𝑢𝐴𝑣𝐴 ( 𝑟 𝑢 / 𝑦 𝐵𝑠 𝑣 / 𝑦 𝐵 ) ↔ ( ∃ 𝑢𝐴 𝑟 𝑢 / 𝑦 𝐵 ∧ ∃ 𝑣𝐴 𝑠 𝑣 / 𝑦 𝐵 ) )
59 57 58 bitr4i ( ( 𝑟 𝑦𝐴 𝐵𝑠 𝑦𝐴 𝐵 ) ↔ ∃ 𝑢𝐴𝑣𝐴 ( 𝑟 𝑢 / 𝑦 𝐵𝑠 𝑣 / 𝑦 𝐵 ) )
60 simplrr ( ( ( ( ( ∀ 𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶 ) ∧ ( 𝑢𝐴𝑣𝐴 ) ) ∧ ( ( 𝑟 𝑢 / 𝑦 𝐵𝑠 𝑣 / 𝑦 𝐵 ) ∧ ¬ 𝑟 = 𝑠 ) ) ∧ 𝑢 = 𝑣 ) → ¬ 𝑟 = 𝑠 )
61 12 2 nfdisjw 𝑦 Disj 𝑥 𝑢 / 𝑦 𝐵 𝐶
62 13 disjeq1d ( 𝑦 = 𝑢 → ( Disj 𝑥𝐵 𝐶Disj 𝑥 𝑢 / 𝑦 𝐵 𝐶 ) )
63 61 62 rspc ( 𝑢𝐴 → ( ∀ 𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑥 𝑢 / 𝑦 𝐵 𝐶 ) )
64 63 impcom ( ( ∀ 𝑦𝐴 Disj 𝑥𝐵 𝐶𝑢𝐴 ) → Disj 𝑥 𝑢 / 𝑦 𝐵 𝐶 )
65 disjors ( Disj 𝑥 𝑢 / 𝑦 𝐵 𝐶 ↔ ∀ 𝑟 𝑢 / 𝑦 𝐵𝑠 𝑢 / 𝑦 𝐵 ( 𝑟 = 𝑠 ∨ ( 𝑟 / 𝑥 𝐶 𝑠 / 𝑥 𝐶 ) = ∅ ) )
66 64 65 sylib ( ( ∀ 𝑦𝐴 Disj 𝑥𝐵 𝐶𝑢𝐴 ) → ∀ 𝑟 𝑢 / 𝑦 𝐵𝑠 𝑢 / 𝑦 𝐵 ( 𝑟 = 𝑠 ∨ ( 𝑟 / 𝑥 𝐶 𝑠 / 𝑥 𝐶 ) = ∅ ) )
67 66 ad2ant2r ( ( ( ∀ 𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶 ) ∧ ( 𝑢𝐴𝑣𝐴 ) ) → ∀ 𝑟 𝑢 / 𝑦 𝐵𝑠 𝑢 / 𝑦 𝐵 ( 𝑟 = 𝑠 ∨ ( 𝑟 / 𝑥 𝐶 𝑠 / 𝑥 𝐶 ) = ∅ ) )
68 67 adantr ( ( ( ( ∀ 𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶 ) ∧ ( 𝑢𝐴𝑣𝐴 ) ) ∧ ( 𝑟 𝑢 / 𝑦 𝐵𝑠 𝑣 / 𝑦 𝐵 ) ) → ∀ 𝑟 𝑢 / 𝑦 𝐵𝑠 𝑢 / 𝑦 𝐵 ( 𝑟 = 𝑠 ∨ ( 𝑟 / 𝑥 𝐶 𝑠 / 𝑥 𝐶 ) = ∅ ) )
69 simplrl ( ( ( ( ( ∀ 𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶 ) ∧ ( 𝑢𝐴𝑣𝐴 ) ) ∧ ( 𝑟 𝑢 / 𝑦 𝐵𝑠 𝑣 / 𝑦 𝐵 ) ) ∧ 𝑢 = 𝑣 ) → 𝑟 𝑢 / 𝑦 𝐵 )
70 simplrr ( ( ( ( ( ∀ 𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶 ) ∧ ( 𝑢𝐴𝑣𝐴 ) ) ∧ ( 𝑟 𝑢 / 𝑦 𝐵𝑠 𝑣 / 𝑦 𝐵 ) ) ∧ 𝑢 = 𝑣 ) → 𝑠 𝑣 / 𝑦 𝐵 )
71 18 adantl ( ( ( ( ( ∀ 𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶 ) ∧ ( 𝑢𝐴𝑣𝐴 ) ) ∧ ( 𝑟 𝑢 / 𝑦 𝐵𝑠 𝑣 / 𝑦 𝐵 ) ) ∧ 𝑢 = 𝑣 ) → 𝑢 / 𝑦 𝐵 = 𝑣 / 𝑦 𝐵 )
72 70 71 eleqtrrd ( ( ( ( ( ∀ 𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶 ) ∧ ( 𝑢𝐴𝑣𝐴 ) ) ∧ ( 𝑟 𝑢 / 𝑦 𝐵𝑠 𝑣 / 𝑦 𝐵 ) ) ∧ 𝑢 = 𝑣 ) → 𝑠 𝑢 / 𝑦 𝐵 )
73 69 72 jca ( ( ( ( ( ∀ 𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶 ) ∧ ( 𝑢𝐴𝑣𝐴 ) ) ∧ ( 𝑟 𝑢 / 𝑦 𝐵𝑠 𝑣 / 𝑦 𝐵 ) ) ∧ 𝑢 = 𝑣 ) → ( 𝑟 𝑢 / 𝑦 𝐵𝑠 𝑢 / 𝑦 𝐵 ) )
74 rsp2 ( ∀ 𝑟 𝑢 / 𝑦 𝐵𝑠 𝑢 / 𝑦 𝐵 ( 𝑟 = 𝑠 ∨ ( 𝑟 / 𝑥 𝐶 𝑠 / 𝑥 𝐶 ) = ∅ ) → ( ( 𝑟 𝑢 / 𝑦 𝐵𝑠 𝑢 / 𝑦 𝐵 ) → ( 𝑟 = 𝑠 ∨ ( 𝑟 / 𝑥 𝐶 𝑠 / 𝑥 𝐶 ) = ∅ ) ) )
75 74 imp ( ( ∀ 𝑟 𝑢 / 𝑦 𝐵𝑠 𝑢 / 𝑦 𝐵 ( 𝑟 = 𝑠 ∨ ( 𝑟 / 𝑥 𝐶 𝑠 / 𝑥 𝐶 ) = ∅ ) ∧ ( 𝑟 𝑢 / 𝑦 𝐵𝑠 𝑢 / 𝑦 𝐵 ) ) → ( 𝑟 = 𝑠 ∨ ( 𝑟 / 𝑥 𝐶 𝑠 / 𝑥 𝐶 ) = ∅ ) )
76 68 73 75 syl2an2r ( ( ( ( ( ∀ 𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶 ) ∧ ( 𝑢𝐴𝑣𝐴 ) ) ∧ ( 𝑟 𝑢 / 𝑦 𝐵𝑠 𝑣 / 𝑦 𝐵 ) ) ∧ 𝑢 = 𝑣 ) → ( 𝑟 = 𝑠 ∨ ( 𝑟 / 𝑥 𝐶 𝑠 / 𝑥 𝐶 ) = ∅ ) )
77 76 adantlrr ( ( ( ( ( ∀ 𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶 ) ∧ ( 𝑢𝐴𝑣𝐴 ) ) ∧ ( ( 𝑟 𝑢 / 𝑦 𝐵𝑠 𝑣 / 𝑦 𝐵 ) ∧ ¬ 𝑟 = 𝑠 ) ) ∧ 𝑢 = 𝑣 ) → ( 𝑟 = 𝑠 ∨ ( 𝑟 / 𝑥 𝐶 𝑠 / 𝑥 𝐶 ) = ∅ ) )
78 77 ord ( ( ( ( ( ∀ 𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶 ) ∧ ( 𝑢𝐴𝑣𝐴 ) ) ∧ ( ( 𝑟 𝑢 / 𝑦 𝐵𝑠 𝑣 / 𝑦 𝐵 ) ∧ ¬ 𝑟 = 𝑠 ) ) ∧ 𝑢 = 𝑣 ) → ( ¬ 𝑟 = 𝑠 → ( 𝑟 / 𝑥 𝐶 𝑠 / 𝑥 𝐶 ) = ∅ ) )
79 60 78 mpd ( ( ( ( ( ∀ 𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶 ) ∧ ( 𝑢𝐴𝑣𝐴 ) ) ∧ ( ( 𝑟 𝑢 / 𝑦 𝐵𝑠 𝑣 / 𝑦 𝐵 ) ∧ ¬ 𝑟 = 𝑠 ) ) ∧ 𝑢 = 𝑣 ) → ( 𝑟 / 𝑥 𝐶 𝑠 / 𝑥 𝐶 ) = ∅ )
80 ssiun2 ( 𝑟 𝑢 / 𝑦 𝐵 𝑟 / 𝑥 𝐶 𝑟 𝑢 / 𝑦 𝐵 𝑟 / 𝑥 𝐶 )
81 nfcv 𝑟 𝐶
82 nfcsb1v 𝑥 𝑟 / 𝑥 𝐶
83 csbeq1a ( 𝑥 = 𝑟𝐶 = 𝑟 / 𝑥 𝐶 )
84 81 82 83 cbviun 𝑥 𝑢 / 𝑦 𝐵 𝐶 = 𝑟 𝑢 / 𝑦 𝐵 𝑟 / 𝑥 𝐶
85 80 84 sseqtrrdi ( 𝑟 𝑢 / 𝑦 𝐵 𝑟 / 𝑥 𝐶 𝑥 𝑢 / 𝑦 𝐵 𝐶 )
86 ssiun2 ( 𝑠 𝑣 / 𝑦 𝐵 𝑠 / 𝑥 𝐶 𝑠 𝑣 / 𝑦 𝐵 𝑠 / 𝑥 𝐶 )
87 nfcv 𝑠 𝐶
88 nfcsb1v 𝑥 𝑠 / 𝑥 𝐶
89 csbeq1a ( 𝑥 = 𝑠𝐶 = 𝑠 / 𝑥 𝐶 )
90 87 88 89 cbviun 𝑥 𝑣 / 𝑦 𝐵 𝐶 = 𝑠 𝑣 / 𝑦 𝐵 𝑠 / 𝑥 𝐶
91 86 90 sseqtrrdi ( 𝑠 𝑣 / 𝑦 𝐵 𝑠 / 𝑥 𝐶 𝑥 𝑣 / 𝑦 𝐵 𝐶 )
92 ss2in ( ( 𝑟 / 𝑥 𝐶 𝑥 𝑢 / 𝑦 𝐵 𝐶 𝑠 / 𝑥 𝐶 𝑥 𝑣 / 𝑦 𝐵 𝐶 ) → ( 𝑟 / 𝑥 𝐶 𝑠 / 𝑥 𝐶 ) ⊆ ( 𝑥 𝑢 / 𝑦 𝐵 𝐶 𝑥 𝑣 / 𝑦 𝐵 𝐶 ) )
93 85 91 92 syl2an ( ( 𝑟 𝑢 / 𝑦 𝐵𝑠 𝑣 / 𝑦 𝐵 ) → ( 𝑟 / 𝑥 𝐶 𝑠 / 𝑥 𝐶 ) ⊆ ( 𝑥 𝑢 / 𝑦 𝐵 𝐶 𝑥 𝑣 / 𝑦 𝐵 𝐶 ) )
94 93 ad2antrl ( ( ( ( ∀ 𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶 ) ∧ ( 𝑢𝐴𝑣𝐴 ) ) ∧ ( ( 𝑟 𝑢 / 𝑦 𝐵𝑠 𝑣 / 𝑦 𝐵 ) ∧ ¬ 𝑟 = 𝑠 ) ) → ( 𝑟 / 𝑥 𝐶 𝑠 / 𝑥 𝐶 ) ⊆ ( 𝑥 𝑢 / 𝑦 𝐵 𝐶 𝑥 𝑣 / 𝑦 𝐵 𝐶 ) )
95 nfcv 𝑧 𝑥𝐵 𝐶
96 nfcsb1v 𝑦 𝑧 / 𝑦 𝐵
97 96 2 nfiun 𝑦 𝑥 𝑧 / 𝑦 𝐵 𝐶
98 csbeq1a ( 𝑦 = 𝑧𝐵 = 𝑧 / 𝑦 𝐵 )
99 98 iuneq1d ( 𝑦 = 𝑧 𝑥𝐵 𝐶 = 𝑥 𝑧 / 𝑦 𝐵 𝐶 )
100 95 97 99 cbvdisj ( Disj 𝑦𝐴 𝑥𝐵 𝐶Disj 𝑧𝐴 𝑥 𝑧 / 𝑦 𝐵 𝐶 )
101 100 biimpi ( Disj 𝑦𝐴 𝑥𝐵 𝐶Disj 𝑧𝐴 𝑥 𝑧 / 𝑦 𝐵 𝐶 )
102 101 ad3antlr ( ( ( ( ∀ 𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶 ) ∧ ( 𝑢𝐴𝑣𝐴 ) ) ∧ ( ( 𝑟 𝑢 / 𝑦 𝐵𝑠 𝑣 / 𝑦 𝐵 ) ∧ ¬ 𝑟 = 𝑠 ) ) → Disj 𝑧𝐴 𝑥 𝑧 / 𝑦 𝐵 𝐶 )
103 simplr ( ( ( ( ∀ 𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶 ) ∧ ( 𝑢𝐴𝑣𝐴 ) ) ∧ ( ( 𝑟 𝑢 / 𝑦 𝐵𝑠 𝑣 / 𝑦 𝐵 ) ∧ ¬ 𝑟 = 𝑠 ) ) → ( 𝑢𝐴𝑣𝐴 ) )
104 id ( 𝑢𝑣𝑢𝑣 )
105 csbeq1 ( 𝑧 = 𝑢 𝑧 / 𝑦 𝐵 = 𝑢 / 𝑦 𝐵 )
106 105 iuneq1d ( 𝑧 = 𝑢 𝑥 𝑧 / 𝑦 𝐵 𝐶 = 𝑥 𝑢 / 𝑦 𝐵 𝐶 )
107 csbeq1 ( 𝑧 = 𝑣 𝑧 / 𝑦 𝐵 = 𝑣 / 𝑦 𝐵 )
108 107 iuneq1d ( 𝑧 = 𝑣 𝑥 𝑧 / 𝑦 𝐵 𝐶 = 𝑥 𝑣 / 𝑦 𝐵 𝐶 )
109 106 108 disji2 ( ( Disj 𝑧𝐴 𝑥 𝑧 / 𝑦 𝐵 𝐶 ∧ ( 𝑢𝐴𝑣𝐴 ) ∧ 𝑢𝑣 ) → ( 𝑥 𝑢 / 𝑦 𝐵 𝐶 𝑥 𝑣 / 𝑦 𝐵 𝐶 ) = ∅ )
110 102 103 104 109 syl2an3an ( ( ( ( ( ∀ 𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶 ) ∧ ( 𝑢𝐴𝑣𝐴 ) ) ∧ ( ( 𝑟 𝑢 / 𝑦 𝐵𝑠 𝑣 / 𝑦 𝐵 ) ∧ ¬ 𝑟 = 𝑠 ) ) ∧ 𝑢𝑣 ) → ( 𝑥 𝑢 / 𝑦 𝐵 𝐶 𝑥 𝑣 / 𝑦 𝐵 𝐶 ) = ∅ )
111 sseq0 ( ( ( 𝑟 / 𝑥 𝐶 𝑠 / 𝑥 𝐶 ) ⊆ ( 𝑥 𝑢 / 𝑦 𝐵 𝐶 𝑥 𝑣 / 𝑦 𝐵 𝐶 ) ∧ ( 𝑥 𝑢 / 𝑦 𝐵 𝐶 𝑥 𝑣 / 𝑦 𝐵 𝐶 ) = ∅ ) → ( 𝑟 / 𝑥 𝐶 𝑠 / 𝑥 𝐶 ) = ∅ )
112 94 110 111 syl2an2r ( ( ( ( ( ∀ 𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶 ) ∧ ( 𝑢𝐴𝑣𝐴 ) ) ∧ ( ( 𝑟 𝑢 / 𝑦 𝐵𝑠 𝑣 / 𝑦 𝐵 ) ∧ ¬ 𝑟 = 𝑠 ) ) ∧ 𝑢𝑣 ) → ( 𝑟 / 𝑥 𝐶 𝑠 / 𝑥 𝐶 ) = ∅ )
113 79 112 pm2.61dane ( ( ( ( ∀ 𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶 ) ∧ ( 𝑢𝐴𝑣𝐴 ) ) ∧ ( ( 𝑟 𝑢 / 𝑦 𝐵𝑠 𝑣 / 𝑦 𝐵 ) ∧ ¬ 𝑟 = 𝑠 ) ) → ( 𝑟 / 𝑥 𝐶 𝑠 / 𝑥 𝐶 ) = ∅ )
114 113 expr ( ( ( ( ∀ 𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶 ) ∧ ( 𝑢𝐴𝑣𝐴 ) ) ∧ ( 𝑟 𝑢 / 𝑦 𝐵𝑠 𝑣 / 𝑦 𝐵 ) ) → ( ¬ 𝑟 = 𝑠 → ( 𝑟 / 𝑥 𝐶 𝑠 / 𝑥 𝐶 ) = ∅ ) )
115 114 orrd ( ( ( ( ∀ 𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶 ) ∧ ( 𝑢𝐴𝑣𝐴 ) ) ∧ ( 𝑟 𝑢 / 𝑦 𝐵𝑠 𝑣 / 𝑦 𝐵 ) ) → ( 𝑟 = 𝑠 ∨ ( 𝑟 / 𝑥 𝐶 𝑠 / 𝑥 𝐶 ) = ∅ ) )
116 115 ex ( ( ( ∀ 𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶 ) ∧ ( 𝑢𝐴𝑣𝐴 ) ) → ( ( 𝑟 𝑢 / 𝑦 𝐵𝑠 𝑣 / 𝑦 𝐵 ) → ( 𝑟 = 𝑠 ∨ ( 𝑟 / 𝑥 𝐶 𝑠 / 𝑥 𝐶 ) = ∅ ) ) )
117 116 rexlimdvva ( ( ∀ 𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶 ) → ( ∃ 𝑢𝐴𝑣𝐴 ( 𝑟 𝑢 / 𝑦 𝐵𝑠 𝑣 / 𝑦 𝐵 ) → ( 𝑟 = 𝑠 ∨ ( 𝑟 / 𝑥 𝐶 𝑠 / 𝑥 𝐶 ) = ∅ ) ) )
118 59 117 syl5bi ( ( ∀ 𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶 ) → ( ( 𝑟 𝑦𝐴 𝐵𝑠 𝑦𝐴 𝐵 ) → ( 𝑟 = 𝑠 ∨ ( 𝑟 / 𝑥 𝐶 𝑠 / 𝑥 𝐶 ) = ∅ ) ) )
119 118 ralrimivv ( ( ∀ 𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶 ) → ∀ 𝑟 𝑦𝐴 𝐵𝑠 𝑦𝐴 𝐵 ( 𝑟 = 𝑠 ∨ ( 𝑟 / 𝑥 𝐶 𝑠 / 𝑥 𝐶 ) = ∅ ) )
120 disjors ( Disj 𝑥 𝑦𝐴 𝐵 𝐶 ↔ ∀ 𝑟 𝑦𝐴 𝐵𝑠 𝑦𝐴 𝐵 ( 𝑟 = 𝑠 ∨ ( 𝑟 / 𝑥 𝐶 𝑠 / 𝑥 𝐶 ) = ∅ ) )
121 119 120 sylibr ( ( ∀ 𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶 ) → Disj 𝑥 𝑦𝐴 𝐵 𝐶 )
122 46 121 impbid1 ( Disj 𝑦𝐴 𝐵 → ( Disj 𝑥 𝑦𝐴 𝐵 𝐶 ↔ ( ∀ 𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶 ) ) )