Step |
Hyp |
Ref |
Expression |
1 |
|
nfiu1 |
⊢ Ⅎ 𝑦 ∪ 𝑦 ∈ 𝐴 𝐵 |
2 |
|
nfcv |
⊢ Ⅎ 𝑦 𝐶 |
3 |
1 2
|
nfdisjw |
⊢ Ⅎ 𝑦 Disj 𝑥 ∈ ∪ 𝑦 ∈ 𝐴 𝐵 𝐶 |
4 |
|
disjss1 |
⊢ ( 𝐵 ⊆ ∪ 𝑦 ∈ 𝐴 𝐵 → ( Disj 𝑥 ∈ ∪ 𝑦 ∈ 𝐴 𝐵 𝐶 → Disj 𝑥 ∈ 𝐵 𝐶 ) ) |
5 |
|
ssiun2 |
⊢ ( 𝑦 ∈ 𝐴 → 𝐵 ⊆ ∪ 𝑦 ∈ 𝐴 𝐵 ) |
6 |
4 5
|
syl11 |
⊢ ( Disj 𝑥 ∈ ∪ 𝑦 ∈ 𝐴 𝐵 𝐶 → ( 𝑦 ∈ 𝐴 → Disj 𝑥 ∈ 𝐵 𝐶 ) ) |
7 |
3 6
|
ralrimi |
⊢ ( Disj 𝑥 ∈ ∪ 𝑦 ∈ 𝐴 𝐵 𝐶 → ∀ 𝑦 ∈ 𝐴 Disj 𝑥 ∈ 𝐵 𝐶 ) |
8 |
7
|
a1i |
⊢ ( Disj 𝑦 ∈ 𝐴 𝐵 → ( Disj 𝑥 ∈ ∪ 𝑦 ∈ 𝐴 𝐵 𝐶 → ∀ 𝑦 ∈ 𝐴 Disj 𝑥 ∈ 𝐵 𝐶 ) ) |
9 |
|
simplr |
⊢ ( ( ( Disj 𝑦 ∈ 𝐴 𝐵 ∧ Disj 𝑥 ∈ ∪ 𝑦 ∈ 𝐴 𝐵 𝐶 ) ∧ ( ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ∧ ¬ 𝑢 = 𝑣 ) ) → Disj 𝑥 ∈ ∪ 𝑦 ∈ 𝐴 𝐵 𝐶 ) |
10 |
|
ssiun2 |
⊢ ( 𝑢 ∈ 𝐴 → ⦋ 𝑢 / 𝑦 ⦌ 𝐵 ⊆ ∪ 𝑢 ∈ 𝐴 ⦋ 𝑢 / 𝑦 ⦌ 𝐵 ) |
11 |
|
nfcv |
⊢ Ⅎ 𝑢 𝐵 |
12 |
|
nfcsb1v |
⊢ Ⅎ 𝑦 ⦋ 𝑢 / 𝑦 ⦌ 𝐵 |
13 |
|
csbeq1a |
⊢ ( 𝑦 = 𝑢 → 𝐵 = ⦋ 𝑢 / 𝑦 ⦌ 𝐵 ) |
14 |
11 12 13
|
cbviun |
⊢ ∪ 𝑦 ∈ 𝐴 𝐵 = ∪ 𝑢 ∈ 𝐴 ⦋ 𝑢 / 𝑦 ⦌ 𝐵 |
15 |
10 14
|
sseqtrrdi |
⊢ ( 𝑢 ∈ 𝐴 → ⦋ 𝑢 / 𝑦 ⦌ 𝐵 ⊆ ∪ 𝑦 ∈ 𝐴 𝐵 ) |
16 |
15
|
adantr |
⊢ ( ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) → ⦋ 𝑢 / 𝑦 ⦌ 𝐵 ⊆ ∪ 𝑦 ∈ 𝐴 𝐵 ) |
17 |
16
|
ad2antrl |
⊢ ( ( ( Disj 𝑦 ∈ 𝐴 𝐵 ∧ Disj 𝑥 ∈ ∪ 𝑦 ∈ 𝐴 𝐵 𝐶 ) ∧ ( ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ∧ ¬ 𝑢 = 𝑣 ) ) → ⦋ 𝑢 / 𝑦 ⦌ 𝐵 ⊆ ∪ 𝑦 ∈ 𝐴 𝐵 ) |
18 |
|
csbeq1 |
⊢ ( 𝑢 = 𝑣 → ⦋ 𝑢 / 𝑦 ⦌ 𝐵 = ⦋ 𝑣 / 𝑦 ⦌ 𝐵 ) |
19 |
18
|
sseq1d |
⊢ ( 𝑢 = 𝑣 → ( ⦋ 𝑢 / 𝑦 ⦌ 𝐵 ⊆ ∪ 𝑦 ∈ 𝐴 𝐵 ↔ ⦋ 𝑣 / 𝑦 ⦌ 𝐵 ⊆ ∪ 𝑦 ∈ 𝐴 𝐵 ) ) |
20 |
19 15
|
vtoclga |
⊢ ( 𝑣 ∈ 𝐴 → ⦋ 𝑣 / 𝑦 ⦌ 𝐵 ⊆ ∪ 𝑦 ∈ 𝐴 𝐵 ) |
21 |
20
|
adantl |
⊢ ( ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) → ⦋ 𝑣 / 𝑦 ⦌ 𝐵 ⊆ ∪ 𝑦 ∈ 𝐴 𝐵 ) |
22 |
21
|
ad2antrl |
⊢ ( ( ( Disj 𝑦 ∈ 𝐴 𝐵 ∧ Disj 𝑥 ∈ ∪ 𝑦 ∈ 𝐴 𝐵 𝐶 ) ∧ ( ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ∧ ¬ 𝑢 = 𝑣 ) ) → ⦋ 𝑣 / 𝑦 ⦌ 𝐵 ⊆ ∪ 𝑦 ∈ 𝐴 𝐵 ) |
23 |
11 12 13
|
cbvdisj |
⊢ ( Disj 𝑦 ∈ 𝐴 𝐵 ↔ Disj 𝑢 ∈ 𝐴 ⦋ 𝑢 / 𝑦 ⦌ 𝐵 ) |
24 |
18
|
disjor |
⊢ ( Disj 𝑢 ∈ 𝐴 ⦋ 𝑢 / 𝑦 ⦌ 𝐵 ↔ ∀ 𝑢 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( 𝑢 = 𝑣 ∨ ( ⦋ 𝑢 / 𝑦 ⦌ 𝐵 ∩ ⦋ 𝑣 / 𝑦 ⦌ 𝐵 ) = ∅ ) ) |
25 |
23 24
|
sylbb |
⊢ ( Disj 𝑦 ∈ 𝐴 𝐵 → ∀ 𝑢 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( 𝑢 = 𝑣 ∨ ( ⦋ 𝑢 / 𝑦 ⦌ 𝐵 ∩ ⦋ 𝑣 / 𝑦 ⦌ 𝐵 ) = ∅ ) ) |
26 |
|
rsp2 |
⊢ ( ∀ 𝑢 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( 𝑢 = 𝑣 ∨ ( ⦋ 𝑢 / 𝑦 ⦌ 𝐵 ∩ ⦋ 𝑣 / 𝑦 ⦌ 𝐵 ) = ∅ ) → ( ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) → ( 𝑢 = 𝑣 ∨ ( ⦋ 𝑢 / 𝑦 ⦌ 𝐵 ∩ ⦋ 𝑣 / 𝑦 ⦌ 𝐵 ) = ∅ ) ) ) |
27 |
25 26
|
syl |
⊢ ( Disj 𝑦 ∈ 𝐴 𝐵 → ( ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) → ( 𝑢 = 𝑣 ∨ ( ⦋ 𝑢 / 𝑦 ⦌ 𝐵 ∩ ⦋ 𝑣 / 𝑦 ⦌ 𝐵 ) = ∅ ) ) ) |
28 |
27
|
imp |
⊢ ( ( Disj 𝑦 ∈ 𝐴 𝐵 ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ) → ( 𝑢 = 𝑣 ∨ ( ⦋ 𝑢 / 𝑦 ⦌ 𝐵 ∩ ⦋ 𝑣 / 𝑦 ⦌ 𝐵 ) = ∅ ) ) |
29 |
28
|
ord |
⊢ ( ( Disj 𝑦 ∈ 𝐴 𝐵 ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ) → ( ¬ 𝑢 = 𝑣 → ( ⦋ 𝑢 / 𝑦 ⦌ 𝐵 ∩ ⦋ 𝑣 / 𝑦 ⦌ 𝐵 ) = ∅ ) ) |
30 |
29
|
impr |
⊢ ( ( Disj 𝑦 ∈ 𝐴 𝐵 ∧ ( ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ∧ ¬ 𝑢 = 𝑣 ) ) → ( ⦋ 𝑢 / 𝑦 ⦌ 𝐵 ∩ ⦋ 𝑣 / 𝑦 ⦌ 𝐵 ) = ∅ ) |
31 |
30
|
adantlr |
⊢ ( ( ( Disj 𝑦 ∈ 𝐴 𝐵 ∧ Disj 𝑥 ∈ ∪ 𝑦 ∈ 𝐴 𝐵 𝐶 ) ∧ ( ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ∧ ¬ 𝑢 = 𝑣 ) ) → ( ⦋ 𝑢 / 𝑦 ⦌ 𝐵 ∩ ⦋ 𝑣 / 𝑦 ⦌ 𝐵 ) = ∅ ) |
32 |
|
disjiun |
⊢ ( ( Disj 𝑥 ∈ ∪ 𝑦 ∈ 𝐴 𝐵 𝐶 ∧ ( ⦋ 𝑢 / 𝑦 ⦌ 𝐵 ⊆ ∪ 𝑦 ∈ 𝐴 𝐵 ∧ ⦋ 𝑣 / 𝑦 ⦌ 𝐵 ⊆ ∪ 𝑦 ∈ 𝐴 𝐵 ∧ ( ⦋ 𝑢 / 𝑦 ⦌ 𝐵 ∩ ⦋ 𝑣 / 𝑦 ⦌ 𝐵 ) = ∅ ) ) → ( ∪ 𝑥 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 𝐶 ∩ ∪ 𝑥 ∈ ⦋ 𝑣 / 𝑦 ⦌ 𝐵 𝐶 ) = ∅ ) |
33 |
9 17 22 31 32
|
syl13anc |
⊢ ( ( ( Disj 𝑦 ∈ 𝐴 𝐵 ∧ Disj 𝑥 ∈ ∪ 𝑦 ∈ 𝐴 𝐵 𝐶 ) ∧ ( ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ∧ ¬ 𝑢 = 𝑣 ) ) → ( ∪ 𝑥 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 𝐶 ∩ ∪ 𝑥 ∈ ⦋ 𝑣 / 𝑦 ⦌ 𝐵 𝐶 ) = ∅ ) |
34 |
33
|
expr |
⊢ ( ( ( Disj 𝑦 ∈ 𝐴 𝐵 ∧ Disj 𝑥 ∈ ∪ 𝑦 ∈ 𝐴 𝐵 𝐶 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ) → ( ¬ 𝑢 = 𝑣 → ( ∪ 𝑥 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 𝐶 ∩ ∪ 𝑥 ∈ ⦋ 𝑣 / 𝑦 ⦌ 𝐵 𝐶 ) = ∅ ) ) |
35 |
34
|
orrd |
⊢ ( ( ( Disj 𝑦 ∈ 𝐴 𝐵 ∧ Disj 𝑥 ∈ ∪ 𝑦 ∈ 𝐴 𝐵 𝐶 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ) → ( 𝑢 = 𝑣 ∨ ( ∪ 𝑥 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 𝐶 ∩ ∪ 𝑥 ∈ ⦋ 𝑣 / 𝑦 ⦌ 𝐵 𝐶 ) = ∅ ) ) |
36 |
35
|
ralrimivva |
⊢ ( ( Disj 𝑦 ∈ 𝐴 𝐵 ∧ Disj 𝑥 ∈ ∪ 𝑦 ∈ 𝐴 𝐵 𝐶 ) → ∀ 𝑢 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( 𝑢 = 𝑣 ∨ ( ∪ 𝑥 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 𝐶 ∩ ∪ 𝑥 ∈ ⦋ 𝑣 / 𝑦 ⦌ 𝐵 𝐶 ) = ∅ ) ) |
37 |
18
|
iuneq1d |
⊢ ( 𝑢 = 𝑣 → ∪ 𝑥 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 𝐶 = ∪ 𝑥 ∈ ⦋ 𝑣 / 𝑦 ⦌ 𝐵 𝐶 ) |
38 |
37
|
disjor |
⊢ ( Disj 𝑢 ∈ 𝐴 ∪ 𝑥 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 𝐶 ↔ ∀ 𝑢 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( 𝑢 = 𝑣 ∨ ( ∪ 𝑥 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 𝐶 ∩ ∪ 𝑥 ∈ ⦋ 𝑣 / 𝑦 ⦌ 𝐵 𝐶 ) = ∅ ) ) |
39 |
36 38
|
sylibr |
⊢ ( ( Disj 𝑦 ∈ 𝐴 𝐵 ∧ Disj 𝑥 ∈ ∪ 𝑦 ∈ 𝐴 𝐵 𝐶 ) → Disj 𝑢 ∈ 𝐴 ∪ 𝑥 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 𝐶 ) |
40 |
|
nfcv |
⊢ Ⅎ 𝑢 ∪ 𝑥 ∈ 𝐵 𝐶 |
41 |
12 2
|
nfiun |
⊢ Ⅎ 𝑦 ∪ 𝑥 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 𝐶 |
42 |
13
|
iuneq1d |
⊢ ( 𝑦 = 𝑢 → ∪ 𝑥 ∈ 𝐵 𝐶 = ∪ 𝑥 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 𝐶 ) |
43 |
40 41 42
|
cbvdisj |
⊢ ( Disj 𝑦 ∈ 𝐴 ∪ 𝑥 ∈ 𝐵 𝐶 ↔ Disj 𝑢 ∈ 𝐴 ∪ 𝑥 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 𝐶 ) |
44 |
39 43
|
sylibr |
⊢ ( ( Disj 𝑦 ∈ 𝐴 𝐵 ∧ Disj 𝑥 ∈ ∪ 𝑦 ∈ 𝐴 𝐵 𝐶 ) → Disj 𝑦 ∈ 𝐴 ∪ 𝑥 ∈ 𝐵 𝐶 ) |
45 |
44
|
ex |
⊢ ( Disj 𝑦 ∈ 𝐴 𝐵 → ( Disj 𝑥 ∈ ∪ 𝑦 ∈ 𝐴 𝐵 𝐶 → Disj 𝑦 ∈ 𝐴 ∪ 𝑥 ∈ 𝐵 𝐶 ) ) |
46 |
8 45
|
jcad |
⊢ ( Disj 𝑦 ∈ 𝐴 𝐵 → ( Disj 𝑥 ∈ ∪ 𝑦 ∈ 𝐴 𝐵 𝐶 → ( ∀ 𝑦 ∈ 𝐴 Disj 𝑥 ∈ 𝐵 𝐶 ∧ Disj 𝑦 ∈ 𝐴 ∪ 𝑥 ∈ 𝐵 𝐶 ) ) ) |
47 |
14
|
eleq2i |
⊢ ( 𝑟 ∈ ∪ 𝑦 ∈ 𝐴 𝐵 ↔ 𝑟 ∈ ∪ 𝑢 ∈ 𝐴 ⦋ 𝑢 / 𝑦 ⦌ 𝐵 ) |
48 |
|
eliun |
⊢ ( 𝑟 ∈ ∪ 𝑢 ∈ 𝐴 ⦋ 𝑢 / 𝑦 ⦌ 𝐵 ↔ ∃ 𝑢 ∈ 𝐴 𝑟 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 ) |
49 |
47 48
|
bitri |
⊢ ( 𝑟 ∈ ∪ 𝑦 ∈ 𝐴 𝐵 ↔ ∃ 𝑢 ∈ 𝐴 𝑟 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 ) |
50 |
|
nfcv |
⊢ Ⅎ 𝑣 𝐵 |
51 |
|
nfcsb1v |
⊢ Ⅎ 𝑦 ⦋ 𝑣 / 𝑦 ⦌ 𝐵 |
52 |
|
csbeq1a |
⊢ ( 𝑦 = 𝑣 → 𝐵 = ⦋ 𝑣 / 𝑦 ⦌ 𝐵 ) |
53 |
50 51 52
|
cbviun |
⊢ ∪ 𝑦 ∈ 𝐴 𝐵 = ∪ 𝑣 ∈ 𝐴 ⦋ 𝑣 / 𝑦 ⦌ 𝐵 |
54 |
53
|
eleq2i |
⊢ ( 𝑠 ∈ ∪ 𝑦 ∈ 𝐴 𝐵 ↔ 𝑠 ∈ ∪ 𝑣 ∈ 𝐴 ⦋ 𝑣 / 𝑦 ⦌ 𝐵 ) |
55 |
|
eliun |
⊢ ( 𝑠 ∈ ∪ 𝑣 ∈ 𝐴 ⦋ 𝑣 / 𝑦 ⦌ 𝐵 ↔ ∃ 𝑣 ∈ 𝐴 𝑠 ∈ ⦋ 𝑣 / 𝑦 ⦌ 𝐵 ) |
56 |
54 55
|
bitri |
⊢ ( 𝑠 ∈ ∪ 𝑦 ∈ 𝐴 𝐵 ↔ ∃ 𝑣 ∈ 𝐴 𝑠 ∈ ⦋ 𝑣 / 𝑦 ⦌ 𝐵 ) |
57 |
49 56
|
anbi12i |
⊢ ( ( 𝑟 ∈ ∪ 𝑦 ∈ 𝐴 𝐵 ∧ 𝑠 ∈ ∪ 𝑦 ∈ 𝐴 𝐵 ) ↔ ( ∃ 𝑢 ∈ 𝐴 𝑟 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 ∧ ∃ 𝑣 ∈ 𝐴 𝑠 ∈ ⦋ 𝑣 / 𝑦 ⦌ 𝐵 ) ) |
58 |
|
reeanv |
⊢ ( ∃ 𝑢 ∈ 𝐴 ∃ 𝑣 ∈ 𝐴 ( 𝑟 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 ∧ 𝑠 ∈ ⦋ 𝑣 / 𝑦 ⦌ 𝐵 ) ↔ ( ∃ 𝑢 ∈ 𝐴 𝑟 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 ∧ ∃ 𝑣 ∈ 𝐴 𝑠 ∈ ⦋ 𝑣 / 𝑦 ⦌ 𝐵 ) ) |
59 |
57 58
|
bitr4i |
⊢ ( ( 𝑟 ∈ ∪ 𝑦 ∈ 𝐴 𝐵 ∧ 𝑠 ∈ ∪ 𝑦 ∈ 𝐴 𝐵 ) ↔ ∃ 𝑢 ∈ 𝐴 ∃ 𝑣 ∈ 𝐴 ( 𝑟 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 ∧ 𝑠 ∈ ⦋ 𝑣 / 𝑦 ⦌ 𝐵 ) ) |
60 |
|
simplrr |
⊢ ( ( ( ( ( ∀ 𝑦 ∈ 𝐴 Disj 𝑥 ∈ 𝐵 𝐶 ∧ Disj 𝑦 ∈ 𝐴 ∪ 𝑥 ∈ 𝐵 𝐶 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ) ∧ ( ( 𝑟 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 ∧ 𝑠 ∈ ⦋ 𝑣 / 𝑦 ⦌ 𝐵 ) ∧ ¬ 𝑟 = 𝑠 ) ) ∧ 𝑢 = 𝑣 ) → ¬ 𝑟 = 𝑠 ) |
61 |
12 2
|
nfdisjw |
⊢ Ⅎ 𝑦 Disj 𝑥 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 𝐶 |
62 |
13
|
disjeq1d |
⊢ ( 𝑦 = 𝑢 → ( Disj 𝑥 ∈ 𝐵 𝐶 ↔ Disj 𝑥 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 𝐶 ) ) |
63 |
61 62
|
rspc |
⊢ ( 𝑢 ∈ 𝐴 → ( ∀ 𝑦 ∈ 𝐴 Disj 𝑥 ∈ 𝐵 𝐶 → Disj 𝑥 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 𝐶 ) ) |
64 |
63
|
impcom |
⊢ ( ( ∀ 𝑦 ∈ 𝐴 Disj 𝑥 ∈ 𝐵 𝐶 ∧ 𝑢 ∈ 𝐴 ) → Disj 𝑥 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 𝐶 ) |
65 |
|
disjors |
⊢ ( Disj 𝑥 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 𝐶 ↔ ∀ 𝑟 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 ∀ 𝑠 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 ( 𝑟 = 𝑠 ∨ ( ⦋ 𝑟 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑠 / 𝑥 ⦌ 𝐶 ) = ∅ ) ) |
66 |
64 65
|
sylib |
⊢ ( ( ∀ 𝑦 ∈ 𝐴 Disj 𝑥 ∈ 𝐵 𝐶 ∧ 𝑢 ∈ 𝐴 ) → ∀ 𝑟 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 ∀ 𝑠 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 ( 𝑟 = 𝑠 ∨ ( ⦋ 𝑟 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑠 / 𝑥 ⦌ 𝐶 ) = ∅ ) ) |
67 |
66
|
ad2ant2r |
⊢ ( ( ( ∀ 𝑦 ∈ 𝐴 Disj 𝑥 ∈ 𝐵 𝐶 ∧ Disj 𝑦 ∈ 𝐴 ∪ 𝑥 ∈ 𝐵 𝐶 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ) → ∀ 𝑟 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 ∀ 𝑠 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 ( 𝑟 = 𝑠 ∨ ( ⦋ 𝑟 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑠 / 𝑥 ⦌ 𝐶 ) = ∅ ) ) |
68 |
67
|
adantr |
⊢ ( ( ( ( ∀ 𝑦 ∈ 𝐴 Disj 𝑥 ∈ 𝐵 𝐶 ∧ Disj 𝑦 ∈ 𝐴 ∪ 𝑥 ∈ 𝐵 𝐶 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ) ∧ ( 𝑟 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 ∧ 𝑠 ∈ ⦋ 𝑣 / 𝑦 ⦌ 𝐵 ) ) → ∀ 𝑟 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 ∀ 𝑠 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 ( 𝑟 = 𝑠 ∨ ( ⦋ 𝑟 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑠 / 𝑥 ⦌ 𝐶 ) = ∅ ) ) |
69 |
|
simplrl |
⊢ ( ( ( ( ( ∀ 𝑦 ∈ 𝐴 Disj 𝑥 ∈ 𝐵 𝐶 ∧ Disj 𝑦 ∈ 𝐴 ∪ 𝑥 ∈ 𝐵 𝐶 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ) ∧ ( 𝑟 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 ∧ 𝑠 ∈ ⦋ 𝑣 / 𝑦 ⦌ 𝐵 ) ) ∧ 𝑢 = 𝑣 ) → 𝑟 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 ) |
70 |
|
simplrr |
⊢ ( ( ( ( ( ∀ 𝑦 ∈ 𝐴 Disj 𝑥 ∈ 𝐵 𝐶 ∧ Disj 𝑦 ∈ 𝐴 ∪ 𝑥 ∈ 𝐵 𝐶 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ) ∧ ( 𝑟 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 ∧ 𝑠 ∈ ⦋ 𝑣 / 𝑦 ⦌ 𝐵 ) ) ∧ 𝑢 = 𝑣 ) → 𝑠 ∈ ⦋ 𝑣 / 𝑦 ⦌ 𝐵 ) |
71 |
18
|
adantl |
⊢ ( ( ( ( ( ∀ 𝑦 ∈ 𝐴 Disj 𝑥 ∈ 𝐵 𝐶 ∧ Disj 𝑦 ∈ 𝐴 ∪ 𝑥 ∈ 𝐵 𝐶 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ) ∧ ( 𝑟 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 ∧ 𝑠 ∈ ⦋ 𝑣 / 𝑦 ⦌ 𝐵 ) ) ∧ 𝑢 = 𝑣 ) → ⦋ 𝑢 / 𝑦 ⦌ 𝐵 = ⦋ 𝑣 / 𝑦 ⦌ 𝐵 ) |
72 |
70 71
|
eleqtrrd |
⊢ ( ( ( ( ( ∀ 𝑦 ∈ 𝐴 Disj 𝑥 ∈ 𝐵 𝐶 ∧ Disj 𝑦 ∈ 𝐴 ∪ 𝑥 ∈ 𝐵 𝐶 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ) ∧ ( 𝑟 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 ∧ 𝑠 ∈ ⦋ 𝑣 / 𝑦 ⦌ 𝐵 ) ) ∧ 𝑢 = 𝑣 ) → 𝑠 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 ) |
73 |
69 72
|
jca |
⊢ ( ( ( ( ( ∀ 𝑦 ∈ 𝐴 Disj 𝑥 ∈ 𝐵 𝐶 ∧ Disj 𝑦 ∈ 𝐴 ∪ 𝑥 ∈ 𝐵 𝐶 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ) ∧ ( 𝑟 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 ∧ 𝑠 ∈ ⦋ 𝑣 / 𝑦 ⦌ 𝐵 ) ) ∧ 𝑢 = 𝑣 ) → ( 𝑟 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 ∧ 𝑠 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 ) ) |
74 |
|
rsp2 |
⊢ ( ∀ 𝑟 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 ∀ 𝑠 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 ( 𝑟 = 𝑠 ∨ ( ⦋ 𝑟 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑠 / 𝑥 ⦌ 𝐶 ) = ∅ ) → ( ( 𝑟 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 ∧ 𝑠 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 ) → ( 𝑟 = 𝑠 ∨ ( ⦋ 𝑟 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑠 / 𝑥 ⦌ 𝐶 ) = ∅ ) ) ) |
75 |
74
|
imp |
⊢ ( ( ∀ 𝑟 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 ∀ 𝑠 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 ( 𝑟 = 𝑠 ∨ ( ⦋ 𝑟 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑠 / 𝑥 ⦌ 𝐶 ) = ∅ ) ∧ ( 𝑟 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 ∧ 𝑠 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 ) ) → ( 𝑟 = 𝑠 ∨ ( ⦋ 𝑟 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑠 / 𝑥 ⦌ 𝐶 ) = ∅ ) ) |
76 |
68 73 75
|
syl2an2r |
⊢ ( ( ( ( ( ∀ 𝑦 ∈ 𝐴 Disj 𝑥 ∈ 𝐵 𝐶 ∧ Disj 𝑦 ∈ 𝐴 ∪ 𝑥 ∈ 𝐵 𝐶 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ) ∧ ( 𝑟 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 ∧ 𝑠 ∈ ⦋ 𝑣 / 𝑦 ⦌ 𝐵 ) ) ∧ 𝑢 = 𝑣 ) → ( 𝑟 = 𝑠 ∨ ( ⦋ 𝑟 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑠 / 𝑥 ⦌ 𝐶 ) = ∅ ) ) |
77 |
76
|
adantlrr |
⊢ ( ( ( ( ( ∀ 𝑦 ∈ 𝐴 Disj 𝑥 ∈ 𝐵 𝐶 ∧ Disj 𝑦 ∈ 𝐴 ∪ 𝑥 ∈ 𝐵 𝐶 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ) ∧ ( ( 𝑟 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 ∧ 𝑠 ∈ ⦋ 𝑣 / 𝑦 ⦌ 𝐵 ) ∧ ¬ 𝑟 = 𝑠 ) ) ∧ 𝑢 = 𝑣 ) → ( 𝑟 = 𝑠 ∨ ( ⦋ 𝑟 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑠 / 𝑥 ⦌ 𝐶 ) = ∅ ) ) |
78 |
77
|
ord |
⊢ ( ( ( ( ( ∀ 𝑦 ∈ 𝐴 Disj 𝑥 ∈ 𝐵 𝐶 ∧ Disj 𝑦 ∈ 𝐴 ∪ 𝑥 ∈ 𝐵 𝐶 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ) ∧ ( ( 𝑟 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 ∧ 𝑠 ∈ ⦋ 𝑣 / 𝑦 ⦌ 𝐵 ) ∧ ¬ 𝑟 = 𝑠 ) ) ∧ 𝑢 = 𝑣 ) → ( ¬ 𝑟 = 𝑠 → ( ⦋ 𝑟 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑠 / 𝑥 ⦌ 𝐶 ) = ∅ ) ) |
79 |
60 78
|
mpd |
⊢ ( ( ( ( ( ∀ 𝑦 ∈ 𝐴 Disj 𝑥 ∈ 𝐵 𝐶 ∧ Disj 𝑦 ∈ 𝐴 ∪ 𝑥 ∈ 𝐵 𝐶 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ) ∧ ( ( 𝑟 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 ∧ 𝑠 ∈ ⦋ 𝑣 / 𝑦 ⦌ 𝐵 ) ∧ ¬ 𝑟 = 𝑠 ) ) ∧ 𝑢 = 𝑣 ) → ( ⦋ 𝑟 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑠 / 𝑥 ⦌ 𝐶 ) = ∅ ) |
80 |
|
ssiun2 |
⊢ ( 𝑟 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 → ⦋ 𝑟 / 𝑥 ⦌ 𝐶 ⊆ ∪ 𝑟 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 ⦋ 𝑟 / 𝑥 ⦌ 𝐶 ) |
81 |
|
nfcv |
⊢ Ⅎ 𝑟 𝐶 |
82 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑟 / 𝑥 ⦌ 𝐶 |
83 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑟 → 𝐶 = ⦋ 𝑟 / 𝑥 ⦌ 𝐶 ) |
84 |
81 82 83
|
cbviun |
⊢ ∪ 𝑥 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 𝐶 = ∪ 𝑟 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 ⦋ 𝑟 / 𝑥 ⦌ 𝐶 |
85 |
80 84
|
sseqtrrdi |
⊢ ( 𝑟 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 → ⦋ 𝑟 / 𝑥 ⦌ 𝐶 ⊆ ∪ 𝑥 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 𝐶 ) |
86 |
|
ssiun2 |
⊢ ( 𝑠 ∈ ⦋ 𝑣 / 𝑦 ⦌ 𝐵 → ⦋ 𝑠 / 𝑥 ⦌ 𝐶 ⊆ ∪ 𝑠 ∈ ⦋ 𝑣 / 𝑦 ⦌ 𝐵 ⦋ 𝑠 / 𝑥 ⦌ 𝐶 ) |
87 |
|
nfcv |
⊢ Ⅎ 𝑠 𝐶 |
88 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑠 / 𝑥 ⦌ 𝐶 |
89 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑠 → 𝐶 = ⦋ 𝑠 / 𝑥 ⦌ 𝐶 ) |
90 |
87 88 89
|
cbviun |
⊢ ∪ 𝑥 ∈ ⦋ 𝑣 / 𝑦 ⦌ 𝐵 𝐶 = ∪ 𝑠 ∈ ⦋ 𝑣 / 𝑦 ⦌ 𝐵 ⦋ 𝑠 / 𝑥 ⦌ 𝐶 |
91 |
86 90
|
sseqtrrdi |
⊢ ( 𝑠 ∈ ⦋ 𝑣 / 𝑦 ⦌ 𝐵 → ⦋ 𝑠 / 𝑥 ⦌ 𝐶 ⊆ ∪ 𝑥 ∈ ⦋ 𝑣 / 𝑦 ⦌ 𝐵 𝐶 ) |
92 |
|
ss2in |
⊢ ( ( ⦋ 𝑟 / 𝑥 ⦌ 𝐶 ⊆ ∪ 𝑥 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 𝐶 ∧ ⦋ 𝑠 / 𝑥 ⦌ 𝐶 ⊆ ∪ 𝑥 ∈ ⦋ 𝑣 / 𝑦 ⦌ 𝐵 𝐶 ) → ( ⦋ 𝑟 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑠 / 𝑥 ⦌ 𝐶 ) ⊆ ( ∪ 𝑥 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 𝐶 ∩ ∪ 𝑥 ∈ ⦋ 𝑣 / 𝑦 ⦌ 𝐵 𝐶 ) ) |
93 |
85 91 92
|
syl2an |
⊢ ( ( 𝑟 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 ∧ 𝑠 ∈ ⦋ 𝑣 / 𝑦 ⦌ 𝐵 ) → ( ⦋ 𝑟 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑠 / 𝑥 ⦌ 𝐶 ) ⊆ ( ∪ 𝑥 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 𝐶 ∩ ∪ 𝑥 ∈ ⦋ 𝑣 / 𝑦 ⦌ 𝐵 𝐶 ) ) |
94 |
93
|
ad2antrl |
⊢ ( ( ( ( ∀ 𝑦 ∈ 𝐴 Disj 𝑥 ∈ 𝐵 𝐶 ∧ Disj 𝑦 ∈ 𝐴 ∪ 𝑥 ∈ 𝐵 𝐶 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ) ∧ ( ( 𝑟 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 ∧ 𝑠 ∈ ⦋ 𝑣 / 𝑦 ⦌ 𝐵 ) ∧ ¬ 𝑟 = 𝑠 ) ) → ( ⦋ 𝑟 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑠 / 𝑥 ⦌ 𝐶 ) ⊆ ( ∪ 𝑥 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 𝐶 ∩ ∪ 𝑥 ∈ ⦋ 𝑣 / 𝑦 ⦌ 𝐵 𝐶 ) ) |
95 |
|
nfcv |
⊢ Ⅎ 𝑧 ∪ 𝑥 ∈ 𝐵 𝐶 |
96 |
|
nfcsb1v |
⊢ Ⅎ 𝑦 ⦋ 𝑧 / 𝑦 ⦌ 𝐵 |
97 |
96 2
|
nfiun |
⊢ Ⅎ 𝑦 ∪ 𝑥 ∈ ⦋ 𝑧 / 𝑦 ⦌ 𝐵 𝐶 |
98 |
|
csbeq1a |
⊢ ( 𝑦 = 𝑧 → 𝐵 = ⦋ 𝑧 / 𝑦 ⦌ 𝐵 ) |
99 |
98
|
iuneq1d |
⊢ ( 𝑦 = 𝑧 → ∪ 𝑥 ∈ 𝐵 𝐶 = ∪ 𝑥 ∈ ⦋ 𝑧 / 𝑦 ⦌ 𝐵 𝐶 ) |
100 |
95 97 99
|
cbvdisj |
⊢ ( Disj 𝑦 ∈ 𝐴 ∪ 𝑥 ∈ 𝐵 𝐶 ↔ Disj 𝑧 ∈ 𝐴 ∪ 𝑥 ∈ ⦋ 𝑧 / 𝑦 ⦌ 𝐵 𝐶 ) |
101 |
100
|
biimpi |
⊢ ( Disj 𝑦 ∈ 𝐴 ∪ 𝑥 ∈ 𝐵 𝐶 → Disj 𝑧 ∈ 𝐴 ∪ 𝑥 ∈ ⦋ 𝑧 / 𝑦 ⦌ 𝐵 𝐶 ) |
102 |
101
|
ad3antlr |
⊢ ( ( ( ( ∀ 𝑦 ∈ 𝐴 Disj 𝑥 ∈ 𝐵 𝐶 ∧ Disj 𝑦 ∈ 𝐴 ∪ 𝑥 ∈ 𝐵 𝐶 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ) ∧ ( ( 𝑟 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 ∧ 𝑠 ∈ ⦋ 𝑣 / 𝑦 ⦌ 𝐵 ) ∧ ¬ 𝑟 = 𝑠 ) ) → Disj 𝑧 ∈ 𝐴 ∪ 𝑥 ∈ ⦋ 𝑧 / 𝑦 ⦌ 𝐵 𝐶 ) |
103 |
|
simplr |
⊢ ( ( ( ( ∀ 𝑦 ∈ 𝐴 Disj 𝑥 ∈ 𝐵 𝐶 ∧ Disj 𝑦 ∈ 𝐴 ∪ 𝑥 ∈ 𝐵 𝐶 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ) ∧ ( ( 𝑟 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 ∧ 𝑠 ∈ ⦋ 𝑣 / 𝑦 ⦌ 𝐵 ) ∧ ¬ 𝑟 = 𝑠 ) ) → ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ) |
104 |
|
id |
⊢ ( 𝑢 ≠ 𝑣 → 𝑢 ≠ 𝑣 ) |
105 |
|
csbeq1 |
⊢ ( 𝑧 = 𝑢 → ⦋ 𝑧 / 𝑦 ⦌ 𝐵 = ⦋ 𝑢 / 𝑦 ⦌ 𝐵 ) |
106 |
105
|
iuneq1d |
⊢ ( 𝑧 = 𝑢 → ∪ 𝑥 ∈ ⦋ 𝑧 / 𝑦 ⦌ 𝐵 𝐶 = ∪ 𝑥 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 𝐶 ) |
107 |
|
csbeq1 |
⊢ ( 𝑧 = 𝑣 → ⦋ 𝑧 / 𝑦 ⦌ 𝐵 = ⦋ 𝑣 / 𝑦 ⦌ 𝐵 ) |
108 |
107
|
iuneq1d |
⊢ ( 𝑧 = 𝑣 → ∪ 𝑥 ∈ ⦋ 𝑧 / 𝑦 ⦌ 𝐵 𝐶 = ∪ 𝑥 ∈ ⦋ 𝑣 / 𝑦 ⦌ 𝐵 𝐶 ) |
109 |
106 108
|
disji2 |
⊢ ( ( Disj 𝑧 ∈ 𝐴 ∪ 𝑥 ∈ ⦋ 𝑧 / 𝑦 ⦌ 𝐵 𝐶 ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ∧ 𝑢 ≠ 𝑣 ) → ( ∪ 𝑥 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 𝐶 ∩ ∪ 𝑥 ∈ ⦋ 𝑣 / 𝑦 ⦌ 𝐵 𝐶 ) = ∅ ) |
110 |
102 103 104 109
|
syl2an3an |
⊢ ( ( ( ( ( ∀ 𝑦 ∈ 𝐴 Disj 𝑥 ∈ 𝐵 𝐶 ∧ Disj 𝑦 ∈ 𝐴 ∪ 𝑥 ∈ 𝐵 𝐶 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ) ∧ ( ( 𝑟 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 ∧ 𝑠 ∈ ⦋ 𝑣 / 𝑦 ⦌ 𝐵 ) ∧ ¬ 𝑟 = 𝑠 ) ) ∧ 𝑢 ≠ 𝑣 ) → ( ∪ 𝑥 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 𝐶 ∩ ∪ 𝑥 ∈ ⦋ 𝑣 / 𝑦 ⦌ 𝐵 𝐶 ) = ∅ ) |
111 |
|
sseq0 |
⊢ ( ( ( ⦋ 𝑟 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑠 / 𝑥 ⦌ 𝐶 ) ⊆ ( ∪ 𝑥 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 𝐶 ∩ ∪ 𝑥 ∈ ⦋ 𝑣 / 𝑦 ⦌ 𝐵 𝐶 ) ∧ ( ∪ 𝑥 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 𝐶 ∩ ∪ 𝑥 ∈ ⦋ 𝑣 / 𝑦 ⦌ 𝐵 𝐶 ) = ∅ ) → ( ⦋ 𝑟 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑠 / 𝑥 ⦌ 𝐶 ) = ∅ ) |
112 |
94 110 111
|
syl2an2r |
⊢ ( ( ( ( ( ∀ 𝑦 ∈ 𝐴 Disj 𝑥 ∈ 𝐵 𝐶 ∧ Disj 𝑦 ∈ 𝐴 ∪ 𝑥 ∈ 𝐵 𝐶 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ) ∧ ( ( 𝑟 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 ∧ 𝑠 ∈ ⦋ 𝑣 / 𝑦 ⦌ 𝐵 ) ∧ ¬ 𝑟 = 𝑠 ) ) ∧ 𝑢 ≠ 𝑣 ) → ( ⦋ 𝑟 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑠 / 𝑥 ⦌ 𝐶 ) = ∅ ) |
113 |
79 112
|
pm2.61dane |
⊢ ( ( ( ( ∀ 𝑦 ∈ 𝐴 Disj 𝑥 ∈ 𝐵 𝐶 ∧ Disj 𝑦 ∈ 𝐴 ∪ 𝑥 ∈ 𝐵 𝐶 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ) ∧ ( ( 𝑟 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 ∧ 𝑠 ∈ ⦋ 𝑣 / 𝑦 ⦌ 𝐵 ) ∧ ¬ 𝑟 = 𝑠 ) ) → ( ⦋ 𝑟 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑠 / 𝑥 ⦌ 𝐶 ) = ∅ ) |
114 |
113
|
expr |
⊢ ( ( ( ( ∀ 𝑦 ∈ 𝐴 Disj 𝑥 ∈ 𝐵 𝐶 ∧ Disj 𝑦 ∈ 𝐴 ∪ 𝑥 ∈ 𝐵 𝐶 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ) ∧ ( 𝑟 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 ∧ 𝑠 ∈ ⦋ 𝑣 / 𝑦 ⦌ 𝐵 ) ) → ( ¬ 𝑟 = 𝑠 → ( ⦋ 𝑟 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑠 / 𝑥 ⦌ 𝐶 ) = ∅ ) ) |
115 |
114
|
orrd |
⊢ ( ( ( ( ∀ 𝑦 ∈ 𝐴 Disj 𝑥 ∈ 𝐵 𝐶 ∧ Disj 𝑦 ∈ 𝐴 ∪ 𝑥 ∈ 𝐵 𝐶 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ) ∧ ( 𝑟 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 ∧ 𝑠 ∈ ⦋ 𝑣 / 𝑦 ⦌ 𝐵 ) ) → ( 𝑟 = 𝑠 ∨ ( ⦋ 𝑟 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑠 / 𝑥 ⦌ 𝐶 ) = ∅ ) ) |
116 |
115
|
ex |
⊢ ( ( ( ∀ 𝑦 ∈ 𝐴 Disj 𝑥 ∈ 𝐵 𝐶 ∧ Disj 𝑦 ∈ 𝐴 ∪ 𝑥 ∈ 𝐵 𝐶 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ) → ( ( 𝑟 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 ∧ 𝑠 ∈ ⦋ 𝑣 / 𝑦 ⦌ 𝐵 ) → ( 𝑟 = 𝑠 ∨ ( ⦋ 𝑟 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑠 / 𝑥 ⦌ 𝐶 ) = ∅ ) ) ) |
117 |
116
|
rexlimdvva |
⊢ ( ( ∀ 𝑦 ∈ 𝐴 Disj 𝑥 ∈ 𝐵 𝐶 ∧ Disj 𝑦 ∈ 𝐴 ∪ 𝑥 ∈ 𝐵 𝐶 ) → ( ∃ 𝑢 ∈ 𝐴 ∃ 𝑣 ∈ 𝐴 ( 𝑟 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐵 ∧ 𝑠 ∈ ⦋ 𝑣 / 𝑦 ⦌ 𝐵 ) → ( 𝑟 = 𝑠 ∨ ( ⦋ 𝑟 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑠 / 𝑥 ⦌ 𝐶 ) = ∅ ) ) ) |
118 |
59 117
|
syl5bi |
⊢ ( ( ∀ 𝑦 ∈ 𝐴 Disj 𝑥 ∈ 𝐵 𝐶 ∧ Disj 𝑦 ∈ 𝐴 ∪ 𝑥 ∈ 𝐵 𝐶 ) → ( ( 𝑟 ∈ ∪ 𝑦 ∈ 𝐴 𝐵 ∧ 𝑠 ∈ ∪ 𝑦 ∈ 𝐴 𝐵 ) → ( 𝑟 = 𝑠 ∨ ( ⦋ 𝑟 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑠 / 𝑥 ⦌ 𝐶 ) = ∅ ) ) ) |
119 |
118
|
ralrimivv |
⊢ ( ( ∀ 𝑦 ∈ 𝐴 Disj 𝑥 ∈ 𝐵 𝐶 ∧ Disj 𝑦 ∈ 𝐴 ∪ 𝑥 ∈ 𝐵 𝐶 ) → ∀ 𝑟 ∈ ∪ 𝑦 ∈ 𝐴 𝐵 ∀ 𝑠 ∈ ∪ 𝑦 ∈ 𝐴 𝐵 ( 𝑟 = 𝑠 ∨ ( ⦋ 𝑟 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑠 / 𝑥 ⦌ 𝐶 ) = ∅ ) ) |
120 |
|
disjors |
⊢ ( Disj 𝑥 ∈ ∪ 𝑦 ∈ 𝐴 𝐵 𝐶 ↔ ∀ 𝑟 ∈ ∪ 𝑦 ∈ 𝐴 𝐵 ∀ 𝑠 ∈ ∪ 𝑦 ∈ 𝐴 𝐵 ( 𝑟 = 𝑠 ∨ ( ⦋ 𝑟 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑠 / 𝑥 ⦌ 𝐶 ) = ∅ ) ) |
121 |
119 120
|
sylibr |
⊢ ( ( ∀ 𝑦 ∈ 𝐴 Disj 𝑥 ∈ 𝐵 𝐶 ∧ Disj 𝑦 ∈ 𝐴 ∪ 𝑥 ∈ 𝐵 𝐶 ) → Disj 𝑥 ∈ ∪ 𝑦 ∈ 𝐴 𝐵 𝐶 ) |
122 |
46 121
|
impbid1 |
⊢ ( Disj 𝑦 ∈ 𝐴 𝐵 → ( Disj 𝑥 ∈ ∪ 𝑦 ∈ 𝐴 𝐵 𝐶 ↔ ( ∀ 𝑦 ∈ 𝐴 Disj 𝑥 ∈ 𝐵 𝐶 ∧ Disj 𝑦 ∈ 𝐴 ∪ 𝑥 ∈ 𝐵 𝐶 ) ) ) |