Metamath Proof Explorer


Theorem disjxrnres5

Description: Disjoint range Cartesian product. (Contributed by Peter Mazsa, 25-Aug-2023)

Ref Expression
Assertion disjxrnres5 ( Disj ( 𝑅 ⋉ ( 𝑆𝐴 ) ) ↔ ∀ 𝑢𝐴𝑣𝐴 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] ( 𝑅𝑆 ) ∩ [ 𝑣 ] ( 𝑅𝑆 ) ) = ∅ ) )

Proof

Step Hyp Ref Expression
1 xrnres2 ( ( 𝑅𝑆 ) ↾ 𝐴 ) = ( 𝑅 ⋉ ( 𝑆𝐴 ) )
2 1 disjeqi ( Disj ( ( 𝑅𝑆 ) ↾ 𝐴 ) ↔ Disj ( 𝑅 ⋉ ( 𝑆𝐴 ) ) )
3 xrnrel Rel ( 𝑅𝑆 )
4 disjres ( Rel ( 𝑅𝑆 ) → ( Disj ( ( 𝑅𝑆 ) ↾ 𝐴 ) ↔ ∀ 𝑢𝐴𝑣𝐴 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] ( 𝑅𝑆 ) ∩ [ 𝑣 ] ( 𝑅𝑆 ) ) = ∅ ) ) )
5 3 4 ax-mp ( Disj ( ( 𝑅𝑆 ) ↾ 𝐴 ) ↔ ∀ 𝑢𝐴𝑣𝐴 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] ( 𝑅𝑆 ) ∩ [ 𝑣 ] ( 𝑅𝑆 ) ) = ∅ ) )
6 2 5 bitr3i ( Disj ( 𝑅 ⋉ ( 𝑆𝐴 ) ) ↔ ∀ 𝑢𝐴𝑣𝐴 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] ( 𝑅𝑆 ) ∩ [ 𝑣 ] ( 𝑅𝑆 ) ) = ∅ ) )