Description: A singleton collection is disjoint. (Contributed by Mario Carneiro, 14-Nov-2016)
Ref | Expression | ||
---|---|---|---|
Assertion | disjxsn | ⊢ Disj 𝑥 ∈ { 𝐴 } 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfdisj2 | ⊢ ( Disj 𝑥 ∈ { 𝐴 } 𝐵 ↔ ∀ 𝑦 ∃* 𝑥 ( 𝑥 ∈ { 𝐴 } ∧ 𝑦 ∈ 𝐵 ) ) | |
2 | moeq | ⊢ ∃* 𝑥 𝑥 = 𝐴 | |
3 | elsni | ⊢ ( 𝑥 ∈ { 𝐴 } → 𝑥 = 𝐴 ) | |
4 | 3 | adantr | ⊢ ( ( 𝑥 ∈ { 𝐴 } ∧ 𝑦 ∈ 𝐵 ) → 𝑥 = 𝐴 ) |
5 | 4 | moimi | ⊢ ( ∃* 𝑥 𝑥 = 𝐴 → ∃* 𝑥 ( 𝑥 ∈ { 𝐴 } ∧ 𝑦 ∈ 𝐵 ) ) |
6 | 2 5 | ax-mp | ⊢ ∃* 𝑥 ( 𝑥 ∈ { 𝐴 } ∧ 𝑦 ∈ 𝐵 ) |
7 | 1 6 | mpgbir | ⊢ Disj 𝑥 ∈ { 𝐴 } 𝐵 |