Metamath Proof Explorer


Theorem disjxsn

Description: A singleton collection is disjoint. (Contributed by Mario Carneiro, 14-Nov-2016)

Ref Expression
Assertion disjxsn Disj 𝑥 ∈ { 𝐴 } 𝐵

Proof

Step Hyp Ref Expression
1 dfdisj2 ( Disj 𝑥 ∈ { 𝐴 } 𝐵 ↔ ∀ 𝑦 ∃* 𝑥 ( 𝑥 ∈ { 𝐴 } ∧ 𝑦𝐵 ) )
2 moeq ∃* 𝑥 𝑥 = 𝐴
3 elsni ( 𝑥 ∈ { 𝐴 } → 𝑥 = 𝐴 )
4 3 adantr ( ( 𝑥 ∈ { 𝐴 } ∧ 𝑦𝐵 ) → 𝑥 = 𝐴 )
5 4 moimi ( ∃* 𝑥 𝑥 = 𝐴 → ∃* 𝑥 ( 𝑥 ∈ { 𝐴 } ∧ 𝑦𝐵 ) )
6 2 5 ax-mp ∃* 𝑥 ( 𝑥 ∈ { 𝐴 } ∧ 𝑦𝐵 )
7 1 6 mpgbir Disj 𝑥 ∈ { 𝐴 } 𝐵