Description: A discrete space is locally compact. (Contributed by Mario Carneiro, 20-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | disllycmp | ⊢ ( 𝑋 ∈ 𝑉 → 𝒫 𝑋 ∈ Locally Comp ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snfi | ⊢ { 𝑥 } ∈ Fin | |
2 | discmp | ⊢ ( { 𝑥 } ∈ Fin ↔ 𝒫 { 𝑥 } ∈ Comp ) | |
3 | 1 2 | mpbi | ⊢ 𝒫 { 𝑥 } ∈ Comp |
4 | 3 | rgenw | ⊢ ∀ 𝑥 ∈ 𝑋 𝒫 { 𝑥 } ∈ Comp |
5 | dislly | ⊢ ( 𝑋 ∈ 𝑉 → ( 𝒫 𝑋 ∈ Locally Comp ↔ ∀ 𝑥 ∈ 𝑋 𝒫 { 𝑥 } ∈ Comp ) ) | |
6 | 4 5 | mpbiri | ⊢ ( 𝑋 ∈ 𝑉 → 𝒫 𝑋 ∈ Locally Comp ) |