Metamath Proof Explorer


Theorem disllycmp

Description: A discrete space is locally compact. (Contributed by Mario Carneiro, 20-Mar-2015)

Ref Expression
Assertion disllycmp ( 𝑋𝑉 → 𝒫 𝑋 ∈ Locally Comp )

Proof

Step Hyp Ref Expression
1 snfi { 𝑥 } ∈ Fin
2 discmp ( { 𝑥 } ∈ Fin ↔ 𝒫 { 𝑥 } ∈ Comp )
3 1 2 mpbi 𝒫 { 𝑥 } ∈ Comp
4 3 rgenw 𝑥𝑋 𝒫 { 𝑥 } ∈ Comp
5 dislly ( 𝑋𝑉 → ( 𝒫 𝑋 ∈ Locally Comp ↔ ∀ 𝑥𝑋 𝒫 { 𝑥 } ∈ Comp ) )
6 4 5 mpbiri ( 𝑋𝑉 → 𝒫 𝑋 ∈ Locally Comp )