Step |
Hyp |
Ref |
Expression |
1 |
|
uniss |
⊢ ( 𝑥 ⊆ 𝒫 𝐴 → ∪ 𝑥 ⊆ ∪ 𝒫 𝐴 ) |
2 |
|
unipw |
⊢ ∪ 𝒫 𝐴 = 𝐴 |
3 |
1 2
|
sseqtrdi |
⊢ ( 𝑥 ⊆ 𝒫 𝐴 → ∪ 𝑥 ⊆ 𝐴 ) |
4 |
|
vuniex |
⊢ ∪ 𝑥 ∈ V |
5 |
4
|
elpw |
⊢ ( ∪ 𝑥 ∈ 𝒫 𝐴 ↔ ∪ 𝑥 ⊆ 𝐴 ) |
6 |
3 5
|
sylibr |
⊢ ( 𝑥 ⊆ 𝒫 𝐴 → ∪ 𝑥 ∈ 𝒫 𝐴 ) |
7 |
6
|
ax-gen |
⊢ ∀ 𝑥 ( 𝑥 ⊆ 𝒫 𝐴 → ∪ 𝑥 ∈ 𝒫 𝐴 ) |
8 |
7
|
a1i |
⊢ ( 𝐴 ∈ 𝑉 → ∀ 𝑥 ( 𝑥 ⊆ 𝒫 𝐴 → ∪ 𝑥 ∈ 𝒫 𝐴 ) ) |
9 |
|
velpw |
⊢ ( 𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴 ) |
10 |
|
velpw |
⊢ ( 𝑦 ∈ 𝒫 𝐴 ↔ 𝑦 ⊆ 𝐴 ) |
11 |
|
ssinss1 |
⊢ ( 𝑥 ⊆ 𝐴 → ( 𝑥 ∩ 𝑦 ) ⊆ 𝐴 ) |
12 |
11
|
a1i |
⊢ ( 𝑦 ⊆ 𝐴 → ( 𝑥 ⊆ 𝐴 → ( 𝑥 ∩ 𝑦 ) ⊆ 𝐴 ) ) |
13 |
|
vex |
⊢ 𝑦 ∈ V |
14 |
13
|
inex2 |
⊢ ( 𝑥 ∩ 𝑦 ) ∈ V |
15 |
14
|
elpw |
⊢ ( ( 𝑥 ∩ 𝑦 ) ∈ 𝒫 𝐴 ↔ ( 𝑥 ∩ 𝑦 ) ⊆ 𝐴 ) |
16 |
12 15
|
syl6ibr |
⊢ ( 𝑦 ⊆ 𝐴 → ( 𝑥 ⊆ 𝐴 → ( 𝑥 ∩ 𝑦 ) ∈ 𝒫 𝐴 ) ) |
17 |
10 16
|
sylbi |
⊢ ( 𝑦 ∈ 𝒫 𝐴 → ( 𝑥 ⊆ 𝐴 → ( 𝑥 ∩ 𝑦 ) ∈ 𝒫 𝐴 ) ) |
18 |
17
|
com12 |
⊢ ( 𝑥 ⊆ 𝐴 → ( 𝑦 ∈ 𝒫 𝐴 → ( 𝑥 ∩ 𝑦 ) ∈ 𝒫 𝐴 ) ) |
19 |
9 18
|
sylbi |
⊢ ( 𝑥 ∈ 𝒫 𝐴 → ( 𝑦 ∈ 𝒫 𝐴 → ( 𝑥 ∩ 𝑦 ) ∈ 𝒫 𝐴 ) ) |
20 |
19
|
ralrimiv |
⊢ ( 𝑥 ∈ 𝒫 𝐴 → ∀ 𝑦 ∈ 𝒫 𝐴 ( 𝑥 ∩ 𝑦 ) ∈ 𝒫 𝐴 ) |
21 |
20
|
rgen |
⊢ ∀ 𝑥 ∈ 𝒫 𝐴 ∀ 𝑦 ∈ 𝒫 𝐴 ( 𝑥 ∩ 𝑦 ) ∈ 𝒫 𝐴 |
22 |
21
|
a1i |
⊢ ( 𝐴 ∈ 𝑉 → ∀ 𝑥 ∈ 𝒫 𝐴 ∀ 𝑦 ∈ 𝒫 𝐴 ( 𝑥 ∩ 𝑦 ) ∈ 𝒫 𝐴 ) |
23 |
|
pwexg |
⊢ ( 𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ V ) |
24 |
|
istopg |
⊢ ( 𝒫 𝐴 ∈ V → ( 𝒫 𝐴 ∈ Top ↔ ( ∀ 𝑥 ( 𝑥 ⊆ 𝒫 𝐴 → ∪ 𝑥 ∈ 𝒫 𝐴 ) ∧ ∀ 𝑥 ∈ 𝒫 𝐴 ∀ 𝑦 ∈ 𝒫 𝐴 ( 𝑥 ∩ 𝑦 ) ∈ 𝒫 𝐴 ) ) ) |
25 |
23 24
|
syl |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝒫 𝐴 ∈ Top ↔ ( ∀ 𝑥 ( 𝑥 ⊆ 𝒫 𝐴 → ∪ 𝑥 ∈ 𝒫 𝐴 ) ∧ ∀ 𝑥 ∈ 𝒫 𝐴 ∀ 𝑦 ∈ 𝒫 𝐴 ( 𝑥 ∩ 𝑦 ) ∈ 𝒫 𝐴 ) ) ) |
26 |
8 22 25
|
mpbir2and |
⊢ ( 𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ Top ) |