Metamath Proof Explorer


Theorem distopon

Description: The discrete topology on a set A , with base set. (Contributed by Mario Carneiro, 13-Aug-2015)

Ref Expression
Assertion distopon ( 𝐴𝑉 → 𝒫 𝐴 ∈ ( TopOn ‘ 𝐴 ) )

Proof

Step Hyp Ref Expression
1 distop ( 𝐴𝑉 → 𝒫 𝐴 ∈ Top )
2 unipw 𝒫 𝐴 = 𝐴
3 2 eqcomi 𝐴 = 𝒫 𝐴
4 istopon ( 𝒫 𝐴 ∈ ( TopOn ‘ 𝐴 ) ↔ ( 𝒫 𝐴 ∈ Top ∧ 𝐴 = 𝒫 𝐴 ) )
5 1 3 4 sylanblrc ( 𝐴𝑉 → 𝒫 𝐴 ∈ ( TopOn ‘ 𝐴 ) )