Metamath Proof Explorer


Theorem distps

Description: The discrete topology on a set A expressed as a topological space. (Contributed by FL, 20-Aug-2006)

Ref Expression
Hypotheses distps.a 𝐴 ∈ V
distps.k 𝐾 = { ⟨ ( Base ‘ ndx ) , 𝐴 ⟩ , ⟨ ( TopSet ‘ ndx ) , 𝒫 𝐴 ⟩ }
Assertion distps 𝐾 ∈ TopSp

Proof

Step Hyp Ref Expression
1 distps.a 𝐴 ∈ V
2 distps.k 𝐾 = { ⟨ ( Base ‘ ndx ) , 𝐴 ⟩ , ⟨ ( TopSet ‘ ndx ) , 𝒫 𝐴 ⟩ }
3 unipw 𝒫 𝐴 = 𝐴
4 3 eqcomi 𝐴 = 𝒫 𝐴
5 distop ( 𝐴 ∈ V → 𝒫 𝐴 ∈ Top )
6 1 5 ax-mp 𝒫 𝐴 ∈ Top
7 2 4 6 eltpsi 𝐾 ∈ TopSp