Metamath Proof Explorer


Theorem distrlem1pr

Description: Lemma for distributive law for positive reals. (Contributed by NM, 1-May-1996) (Revised by Mario Carneiro, 13-Jun-2013) (New usage is discouraged.)

Ref Expression
Assertion distrlem1pr ( ( 𝐴P𝐵P𝐶P ) → ( 𝐴 ·P ( 𝐵 +P 𝐶 ) ) ⊆ ( ( 𝐴 ·P 𝐵 ) +P ( 𝐴 ·P 𝐶 ) ) )

Proof

Step Hyp Ref Expression
1 addclpr ( ( 𝐵P𝐶P ) → ( 𝐵 +P 𝐶 ) ∈ P )
2 df-mp ·P = ( 𝑦P , 𝑧P ↦ { 𝑓 ∣ ∃ 𝑔𝑦𝑧 𝑓 = ( 𝑔 ·Q ) } )
3 mulclnq ( ( 𝑔QQ ) → ( 𝑔 ·Q ) ∈ Q )
4 2 3 genpelv ( ( 𝐴P ∧ ( 𝐵 +P 𝐶 ) ∈ P ) → ( 𝑤 ∈ ( 𝐴 ·P ( 𝐵 +P 𝐶 ) ) ↔ ∃ 𝑥𝐴𝑣 ∈ ( 𝐵 +P 𝐶 ) 𝑤 = ( 𝑥 ·Q 𝑣 ) ) )
5 1 4 sylan2 ( ( 𝐴P ∧ ( 𝐵P𝐶P ) ) → ( 𝑤 ∈ ( 𝐴 ·P ( 𝐵 +P 𝐶 ) ) ↔ ∃ 𝑥𝐴𝑣 ∈ ( 𝐵 +P 𝐶 ) 𝑤 = ( 𝑥 ·Q 𝑣 ) ) )
6 5 3impb ( ( 𝐴P𝐵P𝐶P ) → ( 𝑤 ∈ ( 𝐴 ·P ( 𝐵 +P 𝐶 ) ) ↔ ∃ 𝑥𝐴𝑣 ∈ ( 𝐵 +P 𝐶 ) 𝑤 = ( 𝑥 ·Q 𝑣 ) ) )
7 df-plp +P = ( 𝑤P , 𝑥P ↦ { 𝑓 ∣ ∃ 𝑔𝑤𝑥 𝑓 = ( 𝑔 +Q ) } )
8 addclnq ( ( 𝑔QQ ) → ( 𝑔 +Q ) ∈ Q )
9 7 8 genpelv ( ( 𝐵P𝐶P ) → ( 𝑣 ∈ ( 𝐵 +P 𝐶 ) ↔ ∃ 𝑦𝐵𝑧𝐶 𝑣 = ( 𝑦 +Q 𝑧 ) ) )
10 9 3adant1 ( ( 𝐴P𝐵P𝐶P ) → ( 𝑣 ∈ ( 𝐵 +P 𝐶 ) ↔ ∃ 𝑦𝐵𝑧𝐶 𝑣 = ( 𝑦 +Q 𝑧 ) ) )
11 10 adantr ( ( ( 𝐴P𝐵P𝐶P ) ∧ ( 𝑥𝐴𝑤 = ( 𝑥 ·Q 𝑣 ) ) ) → ( 𝑣 ∈ ( 𝐵 +P 𝐶 ) ↔ ∃ 𝑦𝐵𝑧𝐶 𝑣 = ( 𝑦 +Q 𝑧 ) ) )
12 simprr ( ( ( 𝐴P𝐵P𝐶P ) ∧ ( 𝑥𝐴𝑤 = ( 𝑥 ·Q 𝑣 ) ) ) → 𝑤 = ( 𝑥 ·Q 𝑣 ) )
13 simpr ( ( ( 𝑦𝐵𝑧𝐶 ) ∧ 𝑣 = ( 𝑦 +Q 𝑧 ) ) → 𝑣 = ( 𝑦 +Q 𝑧 ) )
14 oveq2 ( 𝑣 = ( 𝑦 +Q 𝑧 ) → ( 𝑥 ·Q 𝑣 ) = ( 𝑥 ·Q ( 𝑦 +Q 𝑧 ) ) )
15 14 eqeq2d ( 𝑣 = ( 𝑦 +Q 𝑧 ) → ( 𝑤 = ( 𝑥 ·Q 𝑣 ) ↔ 𝑤 = ( 𝑥 ·Q ( 𝑦 +Q 𝑧 ) ) ) )
16 15 biimpac ( ( 𝑤 = ( 𝑥 ·Q 𝑣 ) ∧ 𝑣 = ( 𝑦 +Q 𝑧 ) ) → 𝑤 = ( 𝑥 ·Q ( 𝑦 +Q 𝑧 ) ) )
17 distrnq ( 𝑥 ·Q ( 𝑦 +Q 𝑧 ) ) = ( ( 𝑥 ·Q 𝑦 ) +Q ( 𝑥 ·Q 𝑧 ) )
18 16 17 eqtrdi ( ( 𝑤 = ( 𝑥 ·Q 𝑣 ) ∧ 𝑣 = ( 𝑦 +Q 𝑧 ) ) → 𝑤 = ( ( 𝑥 ·Q 𝑦 ) +Q ( 𝑥 ·Q 𝑧 ) ) )
19 12 13 18 syl2an ( ( ( ( 𝐴P𝐵P𝐶P ) ∧ ( 𝑥𝐴𝑤 = ( 𝑥 ·Q 𝑣 ) ) ) ∧ ( ( 𝑦𝐵𝑧𝐶 ) ∧ 𝑣 = ( 𝑦 +Q 𝑧 ) ) ) → 𝑤 = ( ( 𝑥 ·Q 𝑦 ) +Q ( 𝑥 ·Q 𝑧 ) ) )
20 mulclpr ( ( 𝐴P𝐵P ) → ( 𝐴 ·P 𝐵 ) ∈ P )
21 20 3adant3 ( ( 𝐴P𝐵P𝐶P ) → ( 𝐴 ·P 𝐵 ) ∈ P )
22 21 ad2antrr ( ( ( ( 𝐴P𝐵P𝐶P ) ∧ ( 𝑥𝐴𝑤 = ( 𝑥 ·Q 𝑣 ) ) ) ∧ ( ( 𝑦𝐵𝑧𝐶 ) ∧ 𝑣 = ( 𝑦 +Q 𝑧 ) ) ) → ( 𝐴 ·P 𝐵 ) ∈ P )
23 mulclpr ( ( 𝐴P𝐶P ) → ( 𝐴 ·P 𝐶 ) ∈ P )
24 23 3adant2 ( ( 𝐴P𝐵P𝐶P ) → ( 𝐴 ·P 𝐶 ) ∈ P )
25 24 ad2antrr ( ( ( ( 𝐴P𝐵P𝐶P ) ∧ ( 𝑥𝐴𝑤 = ( 𝑥 ·Q 𝑣 ) ) ) ∧ ( ( 𝑦𝐵𝑧𝐶 ) ∧ 𝑣 = ( 𝑦 +Q 𝑧 ) ) ) → ( 𝐴 ·P 𝐶 ) ∈ P )
26 simpll ( ( ( 𝑦𝐵𝑧𝐶 ) ∧ 𝑣 = ( 𝑦 +Q 𝑧 ) ) → 𝑦𝐵 )
27 2 3 genpprecl ( ( 𝐴P𝐵P ) → ( ( 𝑥𝐴𝑦𝐵 ) → ( 𝑥 ·Q 𝑦 ) ∈ ( 𝐴 ·P 𝐵 ) ) )
28 27 3adant3 ( ( 𝐴P𝐵P𝐶P ) → ( ( 𝑥𝐴𝑦𝐵 ) → ( 𝑥 ·Q 𝑦 ) ∈ ( 𝐴 ·P 𝐵 ) ) )
29 28 impl ( ( ( ( 𝐴P𝐵P𝐶P ) ∧ 𝑥𝐴 ) ∧ 𝑦𝐵 ) → ( 𝑥 ·Q 𝑦 ) ∈ ( 𝐴 ·P 𝐵 ) )
30 29 adantlrr ( ( ( ( 𝐴P𝐵P𝐶P ) ∧ ( 𝑥𝐴𝑤 = ( 𝑥 ·Q 𝑣 ) ) ) ∧ 𝑦𝐵 ) → ( 𝑥 ·Q 𝑦 ) ∈ ( 𝐴 ·P 𝐵 ) )
31 26 30 sylan2 ( ( ( ( 𝐴P𝐵P𝐶P ) ∧ ( 𝑥𝐴𝑤 = ( 𝑥 ·Q 𝑣 ) ) ) ∧ ( ( 𝑦𝐵𝑧𝐶 ) ∧ 𝑣 = ( 𝑦 +Q 𝑧 ) ) ) → ( 𝑥 ·Q 𝑦 ) ∈ ( 𝐴 ·P 𝐵 ) )
32 simplr ( ( ( 𝑦𝐵𝑧𝐶 ) ∧ 𝑣 = ( 𝑦 +Q 𝑧 ) ) → 𝑧𝐶 )
33 2 3 genpprecl ( ( 𝐴P𝐶P ) → ( ( 𝑥𝐴𝑧𝐶 ) → ( 𝑥 ·Q 𝑧 ) ∈ ( 𝐴 ·P 𝐶 ) ) )
34 33 3adant2 ( ( 𝐴P𝐵P𝐶P ) → ( ( 𝑥𝐴𝑧𝐶 ) → ( 𝑥 ·Q 𝑧 ) ∈ ( 𝐴 ·P 𝐶 ) ) )
35 34 impl ( ( ( ( 𝐴P𝐵P𝐶P ) ∧ 𝑥𝐴 ) ∧ 𝑧𝐶 ) → ( 𝑥 ·Q 𝑧 ) ∈ ( 𝐴 ·P 𝐶 ) )
36 35 adantlrr ( ( ( ( 𝐴P𝐵P𝐶P ) ∧ ( 𝑥𝐴𝑤 = ( 𝑥 ·Q 𝑣 ) ) ) ∧ 𝑧𝐶 ) → ( 𝑥 ·Q 𝑧 ) ∈ ( 𝐴 ·P 𝐶 ) )
37 32 36 sylan2 ( ( ( ( 𝐴P𝐵P𝐶P ) ∧ ( 𝑥𝐴𝑤 = ( 𝑥 ·Q 𝑣 ) ) ) ∧ ( ( 𝑦𝐵𝑧𝐶 ) ∧ 𝑣 = ( 𝑦 +Q 𝑧 ) ) ) → ( 𝑥 ·Q 𝑧 ) ∈ ( 𝐴 ·P 𝐶 ) )
38 7 8 genpprecl ( ( ( 𝐴 ·P 𝐵 ) ∈ P ∧ ( 𝐴 ·P 𝐶 ) ∈ P ) → ( ( ( 𝑥 ·Q 𝑦 ) ∈ ( 𝐴 ·P 𝐵 ) ∧ ( 𝑥 ·Q 𝑧 ) ∈ ( 𝐴 ·P 𝐶 ) ) → ( ( 𝑥 ·Q 𝑦 ) +Q ( 𝑥 ·Q 𝑧 ) ) ∈ ( ( 𝐴 ·P 𝐵 ) +P ( 𝐴 ·P 𝐶 ) ) ) )
39 38 imp ( ( ( ( 𝐴 ·P 𝐵 ) ∈ P ∧ ( 𝐴 ·P 𝐶 ) ∈ P ) ∧ ( ( 𝑥 ·Q 𝑦 ) ∈ ( 𝐴 ·P 𝐵 ) ∧ ( 𝑥 ·Q 𝑧 ) ∈ ( 𝐴 ·P 𝐶 ) ) ) → ( ( 𝑥 ·Q 𝑦 ) +Q ( 𝑥 ·Q 𝑧 ) ) ∈ ( ( 𝐴 ·P 𝐵 ) +P ( 𝐴 ·P 𝐶 ) ) )
40 22 25 31 37 39 syl22anc ( ( ( ( 𝐴P𝐵P𝐶P ) ∧ ( 𝑥𝐴𝑤 = ( 𝑥 ·Q 𝑣 ) ) ) ∧ ( ( 𝑦𝐵𝑧𝐶 ) ∧ 𝑣 = ( 𝑦 +Q 𝑧 ) ) ) → ( ( 𝑥 ·Q 𝑦 ) +Q ( 𝑥 ·Q 𝑧 ) ) ∈ ( ( 𝐴 ·P 𝐵 ) +P ( 𝐴 ·P 𝐶 ) ) )
41 19 40 eqeltrd ( ( ( ( 𝐴P𝐵P𝐶P ) ∧ ( 𝑥𝐴𝑤 = ( 𝑥 ·Q 𝑣 ) ) ) ∧ ( ( 𝑦𝐵𝑧𝐶 ) ∧ 𝑣 = ( 𝑦 +Q 𝑧 ) ) ) → 𝑤 ∈ ( ( 𝐴 ·P 𝐵 ) +P ( 𝐴 ·P 𝐶 ) ) )
42 41 exp32 ( ( ( 𝐴P𝐵P𝐶P ) ∧ ( 𝑥𝐴𝑤 = ( 𝑥 ·Q 𝑣 ) ) ) → ( ( 𝑦𝐵𝑧𝐶 ) → ( 𝑣 = ( 𝑦 +Q 𝑧 ) → 𝑤 ∈ ( ( 𝐴 ·P 𝐵 ) +P ( 𝐴 ·P 𝐶 ) ) ) ) )
43 42 rexlimdvv ( ( ( 𝐴P𝐵P𝐶P ) ∧ ( 𝑥𝐴𝑤 = ( 𝑥 ·Q 𝑣 ) ) ) → ( ∃ 𝑦𝐵𝑧𝐶 𝑣 = ( 𝑦 +Q 𝑧 ) → 𝑤 ∈ ( ( 𝐴 ·P 𝐵 ) +P ( 𝐴 ·P 𝐶 ) ) ) )
44 11 43 sylbid ( ( ( 𝐴P𝐵P𝐶P ) ∧ ( 𝑥𝐴𝑤 = ( 𝑥 ·Q 𝑣 ) ) ) → ( 𝑣 ∈ ( 𝐵 +P 𝐶 ) → 𝑤 ∈ ( ( 𝐴 ·P 𝐵 ) +P ( 𝐴 ·P 𝐶 ) ) ) )
45 44 exp32 ( ( 𝐴P𝐵P𝐶P ) → ( 𝑥𝐴 → ( 𝑤 = ( 𝑥 ·Q 𝑣 ) → ( 𝑣 ∈ ( 𝐵 +P 𝐶 ) → 𝑤 ∈ ( ( 𝐴 ·P 𝐵 ) +P ( 𝐴 ·P 𝐶 ) ) ) ) ) )
46 45 com34 ( ( 𝐴P𝐵P𝐶P ) → ( 𝑥𝐴 → ( 𝑣 ∈ ( 𝐵 +P 𝐶 ) → ( 𝑤 = ( 𝑥 ·Q 𝑣 ) → 𝑤 ∈ ( ( 𝐴 ·P 𝐵 ) +P ( 𝐴 ·P 𝐶 ) ) ) ) ) )
47 46 impd ( ( 𝐴P𝐵P𝐶P ) → ( ( 𝑥𝐴𝑣 ∈ ( 𝐵 +P 𝐶 ) ) → ( 𝑤 = ( 𝑥 ·Q 𝑣 ) → 𝑤 ∈ ( ( 𝐴 ·P 𝐵 ) +P ( 𝐴 ·P 𝐶 ) ) ) ) )
48 47 rexlimdvv ( ( 𝐴P𝐵P𝐶P ) → ( ∃ 𝑥𝐴𝑣 ∈ ( 𝐵 +P 𝐶 ) 𝑤 = ( 𝑥 ·Q 𝑣 ) → 𝑤 ∈ ( ( 𝐴 ·P 𝐵 ) +P ( 𝐴 ·P 𝐶 ) ) ) )
49 6 48 sylbid ( ( 𝐴P𝐵P𝐶P ) → ( 𝑤 ∈ ( 𝐴 ·P ( 𝐵 +P 𝐶 ) ) → 𝑤 ∈ ( ( 𝐴 ·P 𝐵 ) +P ( 𝐴 ·P 𝐶 ) ) ) )
50 49 ssrdv ( ( 𝐴P𝐵P𝐶P ) → ( 𝐴 ·P ( 𝐵 +P 𝐶 ) ) ⊆ ( ( 𝐴 ·P 𝐵 ) +P ( 𝐴 ·P 𝐶 ) ) )