Step |
Hyp |
Ref |
Expression |
1 |
|
addclpr |
⊢ ( ( 𝐵 ∈ P ∧ 𝐶 ∈ P ) → ( 𝐵 +P 𝐶 ) ∈ P ) |
2 |
|
df-mp |
⊢ ·P = ( 𝑦 ∈ P , 𝑧 ∈ P ↦ { 𝑓 ∣ ∃ 𝑔 ∈ 𝑦 ∃ ℎ ∈ 𝑧 𝑓 = ( 𝑔 ·Q ℎ ) } ) |
3 |
|
mulclnq |
⊢ ( ( 𝑔 ∈ Q ∧ ℎ ∈ Q ) → ( 𝑔 ·Q ℎ ) ∈ Q ) |
4 |
2 3
|
genpelv |
⊢ ( ( 𝐴 ∈ P ∧ ( 𝐵 +P 𝐶 ) ∈ P ) → ( 𝑤 ∈ ( 𝐴 ·P ( 𝐵 +P 𝐶 ) ) ↔ ∃ 𝑥 ∈ 𝐴 ∃ 𝑣 ∈ ( 𝐵 +P 𝐶 ) 𝑤 = ( 𝑥 ·Q 𝑣 ) ) ) |
5 |
1 4
|
sylan2 |
⊢ ( ( 𝐴 ∈ P ∧ ( 𝐵 ∈ P ∧ 𝐶 ∈ P ) ) → ( 𝑤 ∈ ( 𝐴 ·P ( 𝐵 +P 𝐶 ) ) ↔ ∃ 𝑥 ∈ 𝐴 ∃ 𝑣 ∈ ( 𝐵 +P 𝐶 ) 𝑤 = ( 𝑥 ·Q 𝑣 ) ) ) |
6 |
5
|
3impb |
⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) → ( 𝑤 ∈ ( 𝐴 ·P ( 𝐵 +P 𝐶 ) ) ↔ ∃ 𝑥 ∈ 𝐴 ∃ 𝑣 ∈ ( 𝐵 +P 𝐶 ) 𝑤 = ( 𝑥 ·Q 𝑣 ) ) ) |
7 |
|
df-plp |
⊢ +P = ( 𝑤 ∈ P , 𝑥 ∈ P ↦ { 𝑓 ∣ ∃ 𝑔 ∈ 𝑤 ∃ ℎ ∈ 𝑥 𝑓 = ( 𝑔 +Q ℎ ) } ) |
8 |
|
addclnq |
⊢ ( ( 𝑔 ∈ Q ∧ ℎ ∈ Q ) → ( 𝑔 +Q ℎ ) ∈ Q ) |
9 |
7 8
|
genpelv |
⊢ ( ( 𝐵 ∈ P ∧ 𝐶 ∈ P ) → ( 𝑣 ∈ ( 𝐵 +P 𝐶 ) ↔ ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐶 𝑣 = ( 𝑦 +Q 𝑧 ) ) ) |
10 |
9
|
3adant1 |
⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) → ( 𝑣 ∈ ( 𝐵 +P 𝐶 ) ↔ ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐶 𝑣 = ( 𝑦 +Q 𝑧 ) ) ) |
11 |
10
|
adantr |
⊢ ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑤 = ( 𝑥 ·Q 𝑣 ) ) ) → ( 𝑣 ∈ ( 𝐵 +P 𝐶 ) ↔ ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐶 𝑣 = ( 𝑦 +Q 𝑧 ) ) ) |
12 |
|
simprr |
⊢ ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑤 = ( 𝑥 ·Q 𝑣 ) ) ) → 𝑤 = ( 𝑥 ·Q 𝑣 ) ) |
13 |
|
simpr |
⊢ ( ( ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶 ) ∧ 𝑣 = ( 𝑦 +Q 𝑧 ) ) → 𝑣 = ( 𝑦 +Q 𝑧 ) ) |
14 |
|
oveq2 |
⊢ ( 𝑣 = ( 𝑦 +Q 𝑧 ) → ( 𝑥 ·Q 𝑣 ) = ( 𝑥 ·Q ( 𝑦 +Q 𝑧 ) ) ) |
15 |
14
|
eqeq2d |
⊢ ( 𝑣 = ( 𝑦 +Q 𝑧 ) → ( 𝑤 = ( 𝑥 ·Q 𝑣 ) ↔ 𝑤 = ( 𝑥 ·Q ( 𝑦 +Q 𝑧 ) ) ) ) |
16 |
15
|
biimpac |
⊢ ( ( 𝑤 = ( 𝑥 ·Q 𝑣 ) ∧ 𝑣 = ( 𝑦 +Q 𝑧 ) ) → 𝑤 = ( 𝑥 ·Q ( 𝑦 +Q 𝑧 ) ) ) |
17 |
|
distrnq |
⊢ ( 𝑥 ·Q ( 𝑦 +Q 𝑧 ) ) = ( ( 𝑥 ·Q 𝑦 ) +Q ( 𝑥 ·Q 𝑧 ) ) |
18 |
16 17
|
eqtrdi |
⊢ ( ( 𝑤 = ( 𝑥 ·Q 𝑣 ) ∧ 𝑣 = ( 𝑦 +Q 𝑧 ) ) → 𝑤 = ( ( 𝑥 ·Q 𝑦 ) +Q ( 𝑥 ·Q 𝑧 ) ) ) |
19 |
12 13 18
|
syl2an |
⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑤 = ( 𝑥 ·Q 𝑣 ) ) ) ∧ ( ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶 ) ∧ 𝑣 = ( 𝑦 +Q 𝑧 ) ) ) → 𝑤 = ( ( 𝑥 ·Q 𝑦 ) +Q ( 𝑥 ·Q 𝑧 ) ) ) |
20 |
|
mulclpr |
⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( 𝐴 ·P 𝐵 ) ∈ P ) |
21 |
20
|
3adant3 |
⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) → ( 𝐴 ·P 𝐵 ) ∈ P ) |
22 |
21
|
ad2antrr |
⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑤 = ( 𝑥 ·Q 𝑣 ) ) ) ∧ ( ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶 ) ∧ 𝑣 = ( 𝑦 +Q 𝑧 ) ) ) → ( 𝐴 ·P 𝐵 ) ∈ P ) |
23 |
|
mulclpr |
⊢ ( ( 𝐴 ∈ P ∧ 𝐶 ∈ P ) → ( 𝐴 ·P 𝐶 ) ∈ P ) |
24 |
23
|
3adant2 |
⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) → ( 𝐴 ·P 𝐶 ) ∈ P ) |
25 |
24
|
ad2antrr |
⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑤 = ( 𝑥 ·Q 𝑣 ) ) ) ∧ ( ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶 ) ∧ 𝑣 = ( 𝑦 +Q 𝑧 ) ) ) → ( 𝐴 ·P 𝐶 ) ∈ P ) |
26 |
|
simpll |
⊢ ( ( ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶 ) ∧ 𝑣 = ( 𝑦 +Q 𝑧 ) ) → 𝑦 ∈ 𝐵 ) |
27 |
2 3
|
genpprecl |
⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 ·Q 𝑦 ) ∈ ( 𝐴 ·P 𝐵 ) ) ) |
28 |
27
|
3adant3 |
⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 ·Q 𝑦 ) ∈ ( 𝐴 ·P 𝐵 ) ) ) |
29 |
28
|
impl |
⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 ·Q 𝑦 ) ∈ ( 𝐴 ·P 𝐵 ) ) |
30 |
29
|
adantlrr |
⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑤 = ( 𝑥 ·Q 𝑣 ) ) ) ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 ·Q 𝑦 ) ∈ ( 𝐴 ·P 𝐵 ) ) |
31 |
26 30
|
sylan2 |
⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑤 = ( 𝑥 ·Q 𝑣 ) ) ) ∧ ( ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶 ) ∧ 𝑣 = ( 𝑦 +Q 𝑧 ) ) ) → ( 𝑥 ·Q 𝑦 ) ∈ ( 𝐴 ·P 𝐵 ) ) |
32 |
|
simplr |
⊢ ( ( ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶 ) ∧ 𝑣 = ( 𝑦 +Q 𝑧 ) ) → 𝑧 ∈ 𝐶 ) |
33 |
2 3
|
genpprecl |
⊢ ( ( 𝐴 ∈ P ∧ 𝐶 ∈ P ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐶 ) → ( 𝑥 ·Q 𝑧 ) ∈ ( 𝐴 ·P 𝐶 ) ) ) |
34 |
33
|
3adant2 |
⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐶 ) → ( 𝑥 ·Q 𝑧 ) ∈ ( 𝐴 ·P 𝐶 ) ) ) |
35 |
34
|
impl |
⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑧 ∈ 𝐶 ) → ( 𝑥 ·Q 𝑧 ) ∈ ( 𝐴 ·P 𝐶 ) ) |
36 |
35
|
adantlrr |
⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑤 = ( 𝑥 ·Q 𝑣 ) ) ) ∧ 𝑧 ∈ 𝐶 ) → ( 𝑥 ·Q 𝑧 ) ∈ ( 𝐴 ·P 𝐶 ) ) |
37 |
32 36
|
sylan2 |
⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑤 = ( 𝑥 ·Q 𝑣 ) ) ) ∧ ( ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶 ) ∧ 𝑣 = ( 𝑦 +Q 𝑧 ) ) ) → ( 𝑥 ·Q 𝑧 ) ∈ ( 𝐴 ·P 𝐶 ) ) |
38 |
7 8
|
genpprecl |
⊢ ( ( ( 𝐴 ·P 𝐵 ) ∈ P ∧ ( 𝐴 ·P 𝐶 ) ∈ P ) → ( ( ( 𝑥 ·Q 𝑦 ) ∈ ( 𝐴 ·P 𝐵 ) ∧ ( 𝑥 ·Q 𝑧 ) ∈ ( 𝐴 ·P 𝐶 ) ) → ( ( 𝑥 ·Q 𝑦 ) +Q ( 𝑥 ·Q 𝑧 ) ) ∈ ( ( 𝐴 ·P 𝐵 ) +P ( 𝐴 ·P 𝐶 ) ) ) ) |
39 |
38
|
imp |
⊢ ( ( ( ( 𝐴 ·P 𝐵 ) ∈ P ∧ ( 𝐴 ·P 𝐶 ) ∈ P ) ∧ ( ( 𝑥 ·Q 𝑦 ) ∈ ( 𝐴 ·P 𝐵 ) ∧ ( 𝑥 ·Q 𝑧 ) ∈ ( 𝐴 ·P 𝐶 ) ) ) → ( ( 𝑥 ·Q 𝑦 ) +Q ( 𝑥 ·Q 𝑧 ) ) ∈ ( ( 𝐴 ·P 𝐵 ) +P ( 𝐴 ·P 𝐶 ) ) ) |
40 |
22 25 31 37 39
|
syl22anc |
⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑤 = ( 𝑥 ·Q 𝑣 ) ) ) ∧ ( ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶 ) ∧ 𝑣 = ( 𝑦 +Q 𝑧 ) ) ) → ( ( 𝑥 ·Q 𝑦 ) +Q ( 𝑥 ·Q 𝑧 ) ) ∈ ( ( 𝐴 ·P 𝐵 ) +P ( 𝐴 ·P 𝐶 ) ) ) |
41 |
19 40
|
eqeltrd |
⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑤 = ( 𝑥 ·Q 𝑣 ) ) ) ∧ ( ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶 ) ∧ 𝑣 = ( 𝑦 +Q 𝑧 ) ) ) → 𝑤 ∈ ( ( 𝐴 ·P 𝐵 ) +P ( 𝐴 ·P 𝐶 ) ) ) |
42 |
41
|
exp32 |
⊢ ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑤 = ( 𝑥 ·Q 𝑣 ) ) ) → ( ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶 ) → ( 𝑣 = ( 𝑦 +Q 𝑧 ) → 𝑤 ∈ ( ( 𝐴 ·P 𝐵 ) +P ( 𝐴 ·P 𝐶 ) ) ) ) ) |
43 |
42
|
rexlimdvv |
⊢ ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑤 = ( 𝑥 ·Q 𝑣 ) ) ) → ( ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐶 𝑣 = ( 𝑦 +Q 𝑧 ) → 𝑤 ∈ ( ( 𝐴 ·P 𝐵 ) +P ( 𝐴 ·P 𝐶 ) ) ) ) |
44 |
11 43
|
sylbid |
⊢ ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑤 = ( 𝑥 ·Q 𝑣 ) ) ) → ( 𝑣 ∈ ( 𝐵 +P 𝐶 ) → 𝑤 ∈ ( ( 𝐴 ·P 𝐵 ) +P ( 𝐴 ·P 𝐶 ) ) ) ) |
45 |
44
|
exp32 |
⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) → ( 𝑥 ∈ 𝐴 → ( 𝑤 = ( 𝑥 ·Q 𝑣 ) → ( 𝑣 ∈ ( 𝐵 +P 𝐶 ) → 𝑤 ∈ ( ( 𝐴 ·P 𝐵 ) +P ( 𝐴 ·P 𝐶 ) ) ) ) ) ) |
46 |
45
|
com34 |
⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) → ( 𝑥 ∈ 𝐴 → ( 𝑣 ∈ ( 𝐵 +P 𝐶 ) → ( 𝑤 = ( 𝑥 ·Q 𝑣 ) → 𝑤 ∈ ( ( 𝐴 ·P 𝐵 ) +P ( 𝐴 ·P 𝐶 ) ) ) ) ) ) |
47 |
46
|
impd |
⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑣 ∈ ( 𝐵 +P 𝐶 ) ) → ( 𝑤 = ( 𝑥 ·Q 𝑣 ) → 𝑤 ∈ ( ( 𝐴 ·P 𝐵 ) +P ( 𝐴 ·P 𝐶 ) ) ) ) ) |
48 |
47
|
rexlimdvv |
⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) → ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑣 ∈ ( 𝐵 +P 𝐶 ) 𝑤 = ( 𝑥 ·Q 𝑣 ) → 𝑤 ∈ ( ( 𝐴 ·P 𝐵 ) +P ( 𝐴 ·P 𝐶 ) ) ) ) |
49 |
6 48
|
sylbid |
⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) → ( 𝑤 ∈ ( 𝐴 ·P ( 𝐵 +P 𝐶 ) ) → 𝑤 ∈ ( ( 𝐴 ·P 𝐵 ) +P ( 𝐴 ·P 𝐶 ) ) ) ) |
50 |
49
|
ssrdv |
⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) → ( 𝐴 ·P ( 𝐵 +P 𝐶 ) ) ⊆ ( ( 𝐴 ·P 𝐵 ) +P ( 𝐴 ·P 𝐶 ) ) ) |