Step |
Hyp |
Ref |
Expression |
1 |
|
df-nr |
⊢ R = ( ( P × P ) / ~R ) |
2 |
|
addsrpr |
⊢ ( ( ( 𝑧 ∈ P ∧ 𝑤 ∈ P ) ∧ ( 𝑣 ∈ P ∧ 𝑢 ∈ P ) ) → ( [ 〈 𝑧 , 𝑤 〉 ] ~R +R [ 〈 𝑣 , 𝑢 〉 ] ~R ) = [ 〈 ( 𝑧 +P 𝑣 ) , ( 𝑤 +P 𝑢 ) 〉 ] ~R ) |
3 |
|
mulsrpr |
⊢ ( ( ( 𝑥 ∈ P ∧ 𝑦 ∈ P ) ∧ ( ( 𝑧 +P 𝑣 ) ∈ P ∧ ( 𝑤 +P 𝑢 ) ∈ P ) ) → ( [ 〈 𝑥 , 𝑦 〉 ] ~R ·R [ 〈 ( 𝑧 +P 𝑣 ) , ( 𝑤 +P 𝑢 ) 〉 ] ~R ) = [ 〈 ( ( 𝑥 ·P ( 𝑧 +P 𝑣 ) ) +P ( 𝑦 ·P ( 𝑤 +P 𝑢 ) ) ) , ( ( 𝑥 ·P ( 𝑤 +P 𝑢 ) ) +P ( 𝑦 ·P ( 𝑧 +P 𝑣 ) ) ) 〉 ] ~R ) |
4 |
|
mulsrpr |
⊢ ( ( ( 𝑥 ∈ P ∧ 𝑦 ∈ P ) ∧ ( 𝑧 ∈ P ∧ 𝑤 ∈ P ) ) → ( [ 〈 𝑥 , 𝑦 〉 ] ~R ·R [ 〈 𝑧 , 𝑤 〉 ] ~R ) = [ 〈 ( ( 𝑥 ·P 𝑧 ) +P ( 𝑦 ·P 𝑤 ) ) , ( ( 𝑥 ·P 𝑤 ) +P ( 𝑦 ·P 𝑧 ) ) 〉 ] ~R ) |
5 |
|
mulsrpr |
⊢ ( ( ( 𝑥 ∈ P ∧ 𝑦 ∈ P ) ∧ ( 𝑣 ∈ P ∧ 𝑢 ∈ P ) ) → ( [ 〈 𝑥 , 𝑦 〉 ] ~R ·R [ 〈 𝑣 , 𝑢 〉 ] ~R ) = [ 〈 ( ( 𝑥 ·P 𝑣 ) +P ( 𝑦 ·P 𝑢 ) ) , ( ( 𝑥 ·P 𝑢 ) +P ( 𝑦 ·P 𝑣 ) ) 〉 ] ~R ) |
6 |
|
addsrpr |
⊢ ( ( ( ( ( 𝑥 ·P 𝑧 ) +P ( 𝑦 ·P 𝑤 ) ) ∈ P ∧ ( ( 𝑥 ·P 𝑤 ) +P ( 𝑦 ·P 𝑧 ) ) ∈ P ) ∧ ( ( ( 𝑥 ·P 𝑣 ) +P ( 𝑦 ·P 𝑢 ) ) ∈ P ∧ ( ( 𝑥 ·P 𝑢 ) +P ( 𝑦 ·P 𝑣 ) ) ∈ P ) ) → ( [ 〈 ( ( 𝑥 ·P 𝑧 ) +P ( 𝑦 ·P 𝑤 ) ) , ( ( 𝑥 ·P 𝑤 ) +P ( 𝑦 ·P 𝑧 ) ) 〉 ] ~R +R [ 〈 ( ( 𝑥 ·P 𝑣 ) +P ( 𝑦 ·P 𝑢 ) ) , ( ( 𝑥 ·P 𝑢 ) +P ( 𝑦 ·P 𝑣 ) ) 〉 ] ~R ) = [ 〈 ( ( ( 𝑥 ·P 𝑧 ) +P ( 𝑦 ·P 𝑤 ) ) +P ( ( 𝑥 ·P 𝑣 ) +P ( 𝑦 ·P 𝑢 ) ) ) , ( ( ( 𝑥 ·P 𝑤 ) +P ( 𝑦 ·P 𝑧 ) ) +P ( ( 𝑥 ·P 𝑢 ) +P ( 𝑦 ·P 𝑣 ) ) ) 〉 ] ~R ) |
7 |
|
addclpr |
⊢ ( ( 𝑧 ∈ P ∧ 𝑣 ∈ P ) → ( 𝑧 +P 𝑣 ) ∈ P ) |
8 |
|
addclpr |
⊢ ( ( 𝑤 ∈ P ∧ 𝑢 ∈ P ) → ( 𝑤 +P 𝑢 ) ∈ P ) |
9 |
7 8
|
anim12i |
⊢ ( ( ( 𝑧 ∈ P ∧ 𝑣 ∈ P ) ∧ ( 𝑤 ∈ P ∧ 𝑢 ∈ P ) ) → ( ( 𝑧 +P 𝑣 ) ∈ P ∧ ( 𝑤 +P 𝑢 ) ∈ P ) ) |
10 |
9
|
an4s |
⊢ ( ( ( 𝑧 ∈ P ∧ 𝑤 ∈ P ) ∧ ( 𝑣 ∈ P ∧ 𝑢 ∈ P ) ) → ( ( 𝑧 +P 𝑣 ) ∈ P ∧ ( 𝑤 +P 𝑢 ) ∈ P ) ) |
11 |
|
mulclpr |
⊢ ( ( 𝑥 ∈ P ∧ 𝑧 ∈ P ) → ( 𝑥 ·P 𝑧 ) ∈ P ) |
12 |
|
mulclpr |
⊢ ( ( 𝑦 ∈ P ∧ 𝑤 ∈ P ) → ( 𝑦 ·P 𝑤 ) ∈ P ) |
13 |
|
addclpr |
⊢ ( ( ( 𝑥 ·P 𝑧 ) ∈ P ∧ ( 𝑦 ·P 𝑤 ) ∈ P ) → ( ( 𝑥 ·P 𝑧 ) +P ( 𝑦 ·P 𝑤 ) ) ∈ P ) |
14 |
11 12 13
|
syl2an |
⊢ ( ( ( 𝑥 ∈ P ∧ 𝑧 ∈ P ) ∧ ( 𝑦 ∈ P ∧ 𝑤 ∈ P ) ) → ( ( 𝑥 ·P 𝑧 ) +P ( 𝑦 ·P 𝑤 ) ) ∈ P ) |
15 |
14
|
an4s |
⊢ ( ( ( 𝑥 ∈ P ∧ 𝑦 ∈ P ) ∧ ( 𝑧 ∈ P ∧ 𝑤 ∈ P ) ) → ( ( 𝑥 ·P 𝑧 ) +P ( 𝑦 ·P 𝑤 ) ) ∈ P ) |
16 |
|
mulclpr |
⊢ ( ( 𝑥 ∈ P ∧ 𝑤 ∈ P ) → ( 𝑥 ·P 𝑤 ) ∈ P ) |
17 |
|
mulclpr |
⊢ ( ( 𝑦 ∈ P ∧ 𝑧 ∈ P ) → ( 𝑦 ·P 𝑧 ) ∈ P ) |
18 |
|
addclpr |
⊢ ( ( ( 𝑥 ·P 𝑤 ) ∈ P ∧ ( 𝑦 ·P 𝑧 ) ∈ P ) → ( ( 𝑥 ·P 𝑤 ) +P ( 𝑦 ·P 𝑧 ) ) ∈ P ) |
19 |
16 17 18
|
syl2an |
⊢ ( ( ( 𝑥 ∈ P ∧ 𝑤 ∈ P ) ∧ ( 𝑦 ∈ P ∧ 𝑧 ∈ P ) ) → ( ( 𝑥 ·P 𝑤 ) +P ( 𝑦 ·P 𝑧 ) ) ∈ P ) |
20 |
19
|
an42s |
⊢ ( ( ( 𝑥 ∈ P ∧ 𝑦 ∈ P ) ∧ ( 𝑧 ∈ P ∧ 𝑤 ∈ P ) ) → ( ( 𝑥 ·P 𝑤 ) +P ( 𝑦 ·P 𝑧 ) ) ∈ P ) |
21 |
15 20
|
jca |
⊢ ( ( ( 𝑥 ∈ P ∧ 𝑦 ∈ P ) ∧ ( 𝑧 ∈ P ∧ 𝑤 ∈ P ) ) → ( ( ( 𝑥 ·P 𝑧 ) +P ( 𝑦 ·P 𝑤 ) ) ∈ P ∧ ( ( 𝑥 ·P 𝑤 ) +P ( 𝑦 ·P 𝑧 ) ) ∈ P ) ) |
22 |
|
mulclpr |
⊢ ( ( 𝑥 ∈ P ∧ 𝑣 ∈ P ) → ( 𝑥 ·P 𝑣 ) ∈ P ) |
23 |
|
mulclpr |
⊢ ( ( 𝑦 ∈ P ∧ 𝑢 ∈ P ) → ( 𝑦 ·P 𝑢 ) ∈ P ) |
24 |
|
addclpr |
⊢ ( ( ( 𝑥 ·P 𝑣 ) ∈ P ∧ ( 𝑦 ·P 𝑢 ) ∈ P ) → ( ( 𝑥 ·P 𝑣 ) +P ( 𝑦 ·P 𝑢 ) ) ∈ P ) |
25 |
22 23 24
|
syl2an |
⊢ ( ( ( 𝑥 ∈ P ∧ 𝑣 ∈ P ) ∧ ( 𝑦 ∈ P ∧ 𝑢 ∈ P ) ) → ( ( 𝑥 ·P 𝑣 ) +P ( 𝑦 ·P 𝑢 ) ) ∈ P ) |
26 |
25
|
an4s |
⊢ ( ( ( 𝑥 ∈ P ∧ 𝑦 ∈ P ) ∧ ( 𝑣 ∈ P ∧ 𝑢 ∈ P ) ) → ( ( 𝑥 ·P 𝑣 ) +P ( 𝑦 ·P 𝑢 ) ) ∈ P ) |
27 |
|
mulclpr |
⊢ ( ( 𝑥 ∈ P ∧ 𝑢 ∈ P ) → ( 𝑥 ·P 𝑢 ) ∈ P ) |
28 |
|
mulclpr |
⊢ ( ( 𝑦 ∈ P ∧ 𝑣 ∈ P ) → ( 𝑦 ·P 𝑣 ) ∈ P ) |
29 |
|
addclpr |
⊢ ( ( ( 𝑥 ·P 𝑢 ) ∈ P ∧ ( 𝑦 ·P 𝑣 ) ∈ P ) → ( ( 𝑥 ·P 𝑢 ) +P ( 𝑦 ·P 𝑣 ) ) ∈ P ) |
30 |
27 28 29
|
syl2an |
⊢ ( ( ( 𝑥 ∈ P ∧ 𝑢 ∈ P ) ∧ ( 𝑦 ∈ P ∧ 𝑣 ∈ P ) ) → ( ( 𝑥 ·P 𝑢 ) +P ( 𝑦 ·P 𝑣 ) ) ∈ P ) |
31 |
30
|
an42s |
⊢ ( ( ( 𝑥 ∈ P ∧ 𝑦 ∈ P ) ∧ ( 𝑣 ∈ P ∧ 𝑢 ∈ P ) ) → ( ( 𝑥 ·P 𝑢 ) +P ( 𝑦 ·P 𝑣 ) ) ∈ P ) |
32 |
26 31
|
jca |
⊢ ( ( ( 𝑥 ∈ P ∧ 𝑦 ∈ P ) ∧ ( 𝑣 ∈ P ∧ 𝑢 ∈ P ) ) → ( ( ( 𝑥 ·P 𝑣 ) +P ( 𝑦 ·P 𝑢 ) ) ∈ P ∧ ( ( 𝑥 ·P 𝑢 ) +P ( 𝑦 ·P 𝑣 ) ) ∈ P ) ) |
33 |
|
distrpr |
⊢ ( 𝑥 ·P ( 𝑧 +P 𝑣 ) ) = ( ( 𝑥 ·P 𝑧 ) +P ( 𝑥 ·P 𝑣 ) ) |
34 |
|
distrpr |
⊢ ( 𝑦 ·P ( 𝑤 +P 𝑢 ) ) = ( ( 𝑦 ·P 𝑤 ) +P ( 𝑦 ·P 𝑢 ) ) |
35 |
33 34
|
oveq12i |
⊢ ( ( 𝑥 ·P ( 𝑧 +P 𝑣 ) ) +P ( 𝑦 ·P ( 𝑤 +P 𝑢 ) ) ) = ( ( ( 𝑥 ·P 𝑧 ) +P ( 𝑥 ·P 𝑣 ) ) +P ( ( 𝑦 ·P 𝑤 ) +P ( 𝑦 ·P 𝑢 ) ) ) |
36 |
|
ovex |
⊢ ( 𝑥 ·P 𝑧 ) ∈ V |
37 |
|
ovex |
⊢ ( 𝑥 ·P 𝑣 ) ∈ V |
38 |
|
ovex |
⊢ ( 𝑦 ·P 𝑤 ) ∈ V |
39 |
|
addcompr |
⊢ ( 𝑓 +P 𝑔 ) = ( 𝑔 +P 𝑓 ) |
40 |
|
addasspr |
⊢ ( ( 𝑓 +P 𝑔 ) +P ℎ ) = ( 𝑓 +P ( 𝑔 +P ℎ ) ) |
41 |
|
ovex |
⊢ ( 𝑦 ·P 𝑢 ) ∈ V |
42 |
36 37 38 39 40 41
|
caov4 |
⊢ ( ( ( 𝑥 ·P 𝑧 ) +P ( 𝑥 ·P 𝑣 ) ) +P ( ( 𝑦 ·P 𝑤 ) +P ( 𝑦 ·P 𝑢 ) ) ) = ( ( ( 𝑥 ·P 𝑧 ) +P ( 𝑦 ·P 𝑤 ) ) +P ( ( 𝑥 ·P 𝑣 ) +P ( 𝑦 ·P 𝑢 ) ) ) |
43 |
35 42
|
eqtri |
⊢ ( ( 𝑥 ·P ( 𝑧 +P 𝑣 ) ) +P ( 𝑦 ·P ( 𝑤 +P 𝑢 ) ) ) = ( ( ( 𝑥 ·P 𝑧 ) +P ( 𝑦 ·P 𝑤 ) ) +P ( ( 𝑥 ·P 𝑣 ) +P ( 𝑦 ·P 𝑢 ) ) ) |
44 |
|
distrpr |
⊢ ( 𝑥 ·P ( 𝑤 +P 𝑢 ) ) = ( ( 𝑥 ·P 𝑤 ) +P ( 𝑥 ·P 𝑢 ) ) |
45 |
|
distrpr |
⊢ ( 𝑦 ·P ( 𝑧 +P 𝑣 ) ) = ( ( 𝑦 ·P 𝑧 ) +P ( 𝑦 ·P 𝑣 ) ) |
46 |
44 45
|
oveq12i |
⊢ ( ( 𝑥 ·P ( 𝑤 +P 𝑢 ) ) +P ( 𝑦 ·P ( 𝑧 +P 𝑣 ) ) ) = ( ( ( 𝑥 ·P 𝑤 ) +P ( 𝑥 ·P 𝑢 ) ) +P ( ( 𝑦 ·P 𝑧 ) +P ( 𝑦 ·P 𝑣 ) ) ) |
47 |
|
ovex |
⊢ ( 𝑥 ·P 𝑤 ) ∈ V |
48 |
|
ovex |
⊢ ( 𝑥 ·P 𝑢 ) ∈ V |
49 |
|
ovex |
⊢ ( 𝑦 ·P 𝑧 ) ∈ V |
50 |
|
ovex |
⊢ ( 𝑦 ·P 𝑣 ) ∈ V |
51 |
47 48 49 39 40 50
|
caov4 |
⊢ ( ( ( 𝑥 ·P 𝑤 ) +P ( 𝑥 ·P 𝑢 ) ) +P ( ( 𝑦 ·P 𝑧 ) +P ( 𝑦 ·P 𝑣 ) ) ) = ( ( ( 𝑥 ·P 𝑤 ) +P ( 𝑦 ·P 𝑧 ) ) +P ( ( 𝑥 ·P 𝑢 ) +P ( 𝑦 ·P 𝑣 ) ) ) |
52 |
46 51
|
eqtri |
⊢ ( ( 𝑥 ·P ( 𝑤 +P 𝑢 ) ) +P ( 𝑦 ·P ( 𝑧 +P 𝑣 ) ) ) = ( ( ( 𝑥 ·P 𝑤 ) +P ( 𝑦 ·P 𝑧 ) ) +P ( ( 𝑥 ·P 𝑢 ) +P ( 𝑦 ·P 𝑣 ) ) ) |
53 |
1 2 3 4 5 6 10 21 32 43 52
|
ecovdi |
⊢ ( ( 𝐴 ∈ R ∧ 𝐵 ∈ R ∧ 𝐶 ∈ R ) → ( 𝐴 ·R ( 𝐵 +R 𝐶 ) ) = ( ( 𝐴 ·R 𝐵 ) +R ( 𝐴 ·R 𝐶 ) ) ) |
54 |
|
dmaddsr |
⊢ dom +R = ( R × R ) |
55 |
|
0nsr |
⊢ ¬ ∅ ∈ R |
56 |
|
dmmulsr |
⊢ dom ·R = ( R × R ) |
57 |
54 55 56
|
ndmovdistr |
⊢ ( ¬ ( 𝐴 ∈ R ∧ 𝐵 ∈ R ∧ 𝐶 ∈ R ) → ( 𝐴 ·R ( 𝐵 +R 𝐶 ) ) = ( ( 𝐴 ·R 𝐵 ) +R ( 𝐴 ·R 𝐶 ) ) ) |
58 |
53 57
|
pm2.61i |
⊢ ( 𝐴 ·R ( 𝐵 +R 𝐶 ) ) = ( ( 𝐴 ·R 𝐵 ) +R ( 𝐴 ·R 𝐶 ) ) |