Metamath Proof Explorer


Theorem ditg0

Description: Value of the directed integral from a point to itself. (Contributed by Mario Carneiro, 13-Aug-2014)

Ref Expression
Assertion ditg0 ⨜ [ 𝐴𝐴 ] 𝐵 d 𝑥 = 0

Proof

Step Hyp Ref Expression
1 df-ditg ⨜ [ 𝐴𝐴 ] 𝐵 d 𝑥 = if ( 𝐴𝐴 , ∫ ( 𝐴 (,) 𝐴 ) 𝐵 d 𝑥 , - ∫ ( 𝐴 (,) 𝐴 ) 𝐵 d 𝑥 )
2 iooid ( 𝐴 (,) 𝐴 ) = ∅
3 itgeq1 ( ( 𝐴 (,) 𝐴 ) = ∅ → ∫ ( 𝐴 (,) 𝐴 ) 𝐵 d 𝑥 = ∫ ∅ 𝐵 d 𝑥 )
4 2 3 ax-mp ∫ ( 𝐴 (,) 𝐴 ) 𝐵 d 𝑥 = ∫ ∅ 𝐵 d 𝑥
5 itg0 ∫ ∅ 𝐵 d 𝑥 = 0
6 4 5 eqtri ∫ ( 𝐴 (,) 𝐴 ) 𝐵 d 𝑥 = 0
7 6 negeqi - ∫ ( 𝐴 (,) 𝐴 ) 𝐵 d 𝑥 = - 0
8 neg0 - 0 = 0
9 7 8 eqtri - ∫ ( 𝐴 (,) 𝐴 ) 𝐵 d 𝑥 = 0
10 ifeq12 ( ( ∫ ( 𝐴 (,) 𝐴 ) 𝐵 d 𝑥 = 0 ∧ - ∫ ( 𝐴 (,) 𝐴 ) 𝐵 d 𝑥 = 0 ) → if ( 𝐴𝐴 , ∫ ( 𝐴 (,) 𝐴 ) 𝐵 d 𝑥 , - ∫ ( 𝐴 (,) 𝐴 ) 𝐵 d 𝑥 ) = if ( 𝐴𝐴 , 0 , 0 ) )
11 6 9 10 mp2an if ( 𝐴𝐴 , ∫ ( 𝐴 (,) 𝐴 ) 𝐵 d 𝑥 , - ∫ ( 𝐴 (,) 𝐴 ) 𝐵 d 𝑥 ) = if ( 𝐴𝐴 , 0 , 0 )
12 ifid if ( 𝐴𝐴 , 0 , 0 ) = 0
13 11 12 eqtri if ( 𝐴𝐴 , ∫ ( 𝐴 (,) 𝐴 ) 𝐵 d 𝑥 , - ∫ ( 𝐴 (,) 𝐴 ) 𝐵 d 𝑥 ) = 0
14 1 13 eqtri ⨜ [ 𝐴𝐴 ] 𝐵 d 𝑥 = 0