Description: Equality theorem for the directed integral. (Contributed by Mario Carneiro, 13-Aug-2014)
Ref | Expression | ||
---|---|---|---|
Hypothesis | ditgeq3dv.1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → 𝐷 = 𝐸 ) | |
Assertion | ditgeq3dv | ⊢ ( 𝜑 → ⨜ [ 𝐴 → 𝐵 ] 𝐷 d 𝑥 = ⨜ [ 𝐴 → 𝐵 ] 𝐸 d 𝑥 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ditgeq3dv.1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → 𝐷 = 𝐸 ) | |
2 | 1 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ℝ 𝐷 = 𝐸 ) |
3 | ditgeq3 | ⊢ ( ∀ 𝑥 ∈ ℝ 𝐷 = 𝐸 → ⨜ [ 𝐴 → 𝐵 ] 𝐷 d 𝑥 = ⨜ [ 𝐴 → 𝐵 ] 𝐸 d 𝑥 ) | |
4 | 2 3 | syl | ⊢ ( 𝜑 → ⨜ [ 𝐴 → 𝐵 ] 𝐷 d 𝑥 = ⨜ [ 𝐴 → 𝐵 ] 𝐸 d 𝑥 ) |