Metamath Proof Explorer


Theorem ditgeq3dv

Description: Equality theorem for the directed integral. (Contributed by Mario Carneiro, 13-Aug-2014)

Ref Expression
Hypothesis ditgeq3dv.1 ( ( 𝜑𝑥 ∈ ℝ ) → 𝐷 = 𝐸 )
Assertion ditgeq3dv ( 𝜑 → ⨜ [ 𝐴𝐵 ] 𝐷 d 𝑥 = ⨜ [ 𝐴𝐵 ] 𝐸 d 𝑥 )

Proof

Step Hyp Ref Expression
1 ditgeq3dv.1 ( ( 𝜑𝑥 ∈ ℝ ) → 𝐷 = 𝐸 )
2 1 ralrimiva ( 𝜑 → ∀ 𝑥 ∈ ℝ 𝐷 = 𝐸 )
3 ditgeq3 ( ∀ 𝑥 ∈ ℝ 𝐷 = 𝐸 → ⨜ [ 𝐴𝐵 ] 𝐷 d 𝑥 = ⨜ [ 𝐴𝐵 ] 𝐸 d 𝑥 )
4 2 3 syl ( 𝜑 → ⨜ [ 𝐴𝐵 ] 𝐷 d 𝑥 = ⨜ [ 𝐴𝐵 ] 𝐸 d 𝑥 )