Metamath Proof Explorer


Theorem ditgex

Description: A directed integral is a set. (Contributed by Mario Carneiro, 7-Sep-2014)

Ref Expression
Assertion ditgex ⨜ [ 𝐴𝐵 ] 𝐶 d 𝑥 ∈ V

Proof

Step Hyp Ref Expression
1 df-ditg ⨜ [ 𝐴𝐵 ] 𝐶 d 𝑥 = if ( 𝐴𝐵 , ∫ ( 𝐴 (,) 𝐵 ) 𝐶 d 𝑥 , - ∫ ( 𝐵 (,) 𝐴 ) 𝐶 d 𝑥 )
2 itgex ∫ ( 𝐴 (,) 𝐵 ) 𝐶 d 𝑥 ∈ V
3 negex - ∫ ( 𝐵 (,) 𝐴 ) 𝐶 d 𝑥 ∈ V
4 2 3 ifex if ( 𝐴𝐵 , ∫ ( 𝐴 (,) 𝐵 ) 𝐶 d 𝑥 , - ∫ ( 𝐵 (,) 𝐴 ) 𝐶 d 𝑥 ) ∈ V
5 1 4 eqeltri ⨜ [ 𝐴𝐵 ] 𝐶 d 𝑥 ∈ V