| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ditgpos.1 | ⊢ ( 𝜑  →  𝐴  ≤  𝐵 ) | 
						
							| 2 |  | ditgneg.2 | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
						
							| 3 |  | ditgneg.3 | ⊢ ( 𝜑  →  𝐵  ∈  ℝ ) | 
						
							| 4 | 1 | biantrurd | ⊢ ( 𝜑  →  ( 𝐵  ≤  𝐴  ↔  ( 𝐴  ≤  𝐵  ∧  𝐵  ≤  𝐴 ) ) ) | 
						
							| 5 | 2 3 | letri3d | ⊢ ( 𝜑  →  ( 𝐴  =  𝐵  ↔  ( 𝐴  ≤  𝐵  ∧  𝐵  ≤  𝐴 ) ) ) | 
						
							| 6 | 4 5 | bitr4d | ⊢ ( 𝜑  →  ( 𝐵  ≤  𝐴  ↔  𝐴  =  𝐵 ) ) | 
						
							| 7 |  | ditg0 | ⊢ ⨜ [ 𝐵  →  𝐵 ] 𝐶  d 𝑥  =  0 | 
						
							| 8 |  | neg0 | ⊢ - 0  =  0 | 
						
							| 9 | 7 8 | eqtr4i | ⊢ ⨜ [ 𝐵  →  𝐵 ] 𝐶  d 𝑥  =  - 0 | 
						
							| 10 |  | ditgeq2 | ⊢ ( 𝐴  =  𝐵  →  ⨜ [ 𝐵  →  𝐴 ] 𝐶  d 𝑥  =  ⨜ [ 𝐵  →  𝐵 ] 𝐶  d 𝑥 ) | 
						
							| 11 |  | oveq1 | ⊢ ( 𝐴  =  𝐵  →  ( 𝐴 (,) 𝐵 )  =  ( 𝐵 (,) 𝐵 ) ) | 
						
							| 12 |  | iooid | ⊢ ( 𝐵 (,) 𝐵 )  =  ∅ | 
						
							| 13 | 11 12 | eqtrdi | ⊢ ( 𝐴  =  𝐵  →  ( 𝐴 (,) 𝐵 )  =  ∅ ) | 
						
							| 14 |  | itgeq1 | ⊢ ( ( 𝐴 (,) 𝐵 )  =  ∅  →  ∫ ( 𝐴 (,) 𝐵 ) 𝐶  d 𝑥  =  ∫ ∅ 𝐶  d 𝑥 ) | 
						
							| 15 | 13 14 | syl | ⊢ ( 𝐴  =  𝐵  →  ∫ ( 𝐴 (,) 𝐵 ) 𝐶  d 𝑥  =  ∫ ∅ 𝐶  d 𝑥 ) | 
						
							| 16 |  | itg0 | ⊢ ∫ ∅ 𝐶  d 𝑥  =  0 | 
						
							| 17 | 15 16 | eqtrdi | ⊢ ( 𝐴  =  𝐵  →  ∫ ( 𝐴 (,) 𝐵 ) 𝐶  d 𝑥  =  0 ) | 
						
							| 18 | 17 | negeqd | ⊢ ( 𝐴  =  𝐵  →  - ∫ ( 𝐴 (,) 𝐵 ) 𝐶  d 𝑥  =  - 0 ) | 
						
							| 19 | 9 10 18 | 3eqtr4a | ⊢ ( 𝐴  =  𝐵  →  ⨜ [ 𝐵  →  𝐴 ] 𝐶  d 𝑥  =  - ∫ ( 𝐴 (,) 𝐵 ) 𝐶  d 𝑥 ) | 
						
							| 20 | 6 19 | biimtrdi | ⊢ ( 𝜑  →  ( 𝐵  ≤  𝐴  →  ⨜ [ 𝐵  →  𝐴 ] 𝐶  d 𝑥  =  - ∫ ( 𝐴 (,) 𝐵 ) 𝐶  d 𝑥 ) ) | 
						
							| 21 |  | df-ditg | ⊢ ⨜ [ 𝐵  →  𝐴 ] 𝐶  d 𝑥  =  if ( 𝐵  ≤  𝐴 ,  ∫ ( 𝐵 (,) 𝐴 ) 𝐶  d 𝑥 ,  - ∫ ( 𝐴 (,) 𝐵 ) 𝐶  d 𝑥 ) | 
						
							| 22 |  | iffalse | ⊢ ( ¬  𝐵  ≤  𝐴  →  if ( 𝐵  ≤  𝐴 ,  ∫ ( 𝐵 (,) 𝐴 ) 𝐶  d 𝑥 ,  - ∫ ( 𝐴 (,) 𝐵 ) 𝐶  d 𝑥 )  =  - ∫ ( 𝐴 (,) 𝐵 ) 𝐶  d 𝑥 ) | 
						
							| 23 | 21 22 | eqtrid | ⊢ ( ¬  𝐵  ≤  𝐴  →  ⨜ [ 𝐵  →  𝐴 ] 𝐶  d 𝑥  =  - ∫ ( 𝐴 (,) 𝐵 ) 𝐶  d 𝑥 ) | 
						
							| 24 | 20 23 | pm2.61d1 | ⊢ ( 𝜑  →  ⨜ [ 𝐵  →  𝐴 ] 𝐶  d 𝑥  =  - ∫ ( 𝐴 (,) 𝐵 ) 𝐶  d 𝑥 ) |