Step |
Hyp |
Ref |
Expression |
1 |
|
ditgpos.1 |
⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) |
2 |
|
ditgneg.2 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
3 |
|
ditgneg.3 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
4 |
1
|
biantrurd |
⊢ ( 𝜑 → ( 𝐵 ≤ 𝐴 ↔ ( 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴 ) ) ) |
5 |
2 3
|
letri3d |
⊢ ( 𝜑 → ( 𝐴 = 𝐵 ↔ ( 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴 ) ) ) |
6 |
4 5
|
bitr4d |
⊢ ( 𝜑 → ( 𝐵 ≤ 𝐴 ↔ 𝐴 = 𝐵 ) ) |
7 |
|
ditg0 |
⊢ ⨜ [ 𝐵 → 𝐵 ] 𝐶 d 𝑥 = 0 |
8 |
|
neg0 |
⊢ - 0 = 0 |
9 |
7 8
|
eqtr4i |
⊢ ⨜ [ 𝐵 → 𝐵 ] 𝐶 d 𝑥 = - 0 |
10 |
|
ditgeq2 |
⊢ ( 𝐴 = 𝐵 → ⨜ [ 𝐵 → 𝐴 ] 𝐶 d 𝑥 = ⨜ [ 𝐵 → 𝐵 ] 𝐶 d 𝑥 ) |
11 |
|
oveq1 |
⊢ ( 𝐴 = 𝐵 → ( 𝐴 (,) 𝐵 ) = ( 𝐵 (,) 𝐵 ) ) |
12 |
|
iooid |
⊢ ( 𝐵 (,) 𝐵 ) = ∅ |
13 |
11 12
|
eqtrdi |
⊢ ( 𝐴 = 𝐵 → ( 𝐴 (,) 𝐵 ) = ∅ ) |
14 |
|
itgeq1 |
⊢ ( ( 𝐴 (,) 𝐵 ) = ∅ → ∫ ( 𝐴 (,) 𝐵 ) 𝐶 d 𝑥 = ∫ ∅ 𝐶 d 𝑥 ) |
15 |
13 14
|
syl |
⊢ ( 𝐴 = 𝐵 → ∫ ( 𝐴 (,) 𝐵 ) 𝐶 d 𝑥 = ∫ ∅ 𝐶 d 𝑥 ) |
16 |
|
itg0 |
⊢ ∫ ∅ 𝐶 d 𝑥 = 0 |
17 |
15 16
|
eqtrdi |
⊢ ( 𝐴 = 𝐵 → ∫ ( 𝐴 (,) 𝐵 ) 𝐶 d 𝑥 = 0 ) |
18 |
17
|
negeqd |
⊢ ( 𝐴 = 𝐵 → - ∫ ( 𝐴 (,) 𝐵 ) 𝐶 d 𝑥 = - 0 ) |
19 |
9 10 18
|
3eqtr4a |
⊢ ( 𝐴 = 𝐵 → ⨜ [ 𝐵 → 𝐴 ] 𝐶 d 𝑥 = - ∫ ( 𝐴 (,) 𝐵 ) 𝐶 d 𝑥 ) |
20 |
6 19
|
syl6bi |
⊢ ( 𝜑 → ( 𝐵 ≤ 𝐴 → ⨜ [ 𝐵 → 𝐴 ] 𝐶 d 𝑥 = - ∫ ( 𝐴 (,) 𝐵 ) 𝐶 d 𝑥 ) ) |
21 |
|
df-ditg |
⊢ ⨜ [ 𝐵 → 𝐴 ] 𝐶 d 𝑥 = if ( 𝐵 ≤ 𝐴 , ∫ ( 𝐵 (,) 𝐴 ) 𝐶 d 𝑥 , - ∫ ( 𝐴 (,) 𝐵 ) 𝐶 d 𝑥 ) |
22 |
|
iffalse |
⊢ ( ¬ 𝐵 ≤ 𝐴 → if ( 𝐵 ≤ 𝐴 , ∫ ( 𝐵 (,) 𝐴 ) 𝐶 d 𝑥 , - ∫ ( 𝐴 (,) 𝐵 ) 𝐶 d 𝑥 ) = - ∫ ( 𝐴 (,) 𝐵 ) 𝐶 d 𝑥 ) |
23 |
21 22
|
syl5eq |
⊢ ( ¬ 𝐵 ≤ 𝐴 → ⨜ [ 𝐵 → 𝐴 ] 𝐶 d 𝑥 = - ∫ ( 𝐴 (,) 𝐵 ) 𝐶 d 𝑥 ) |
24 |
20 23
|
pm2.61d1 |
⊢ ( 𝜑 → ⨜ [ 𝐵 → 𝐴 ] 𝐶 d 𝑥 = - ∫ ( 𝐴 (,) 𝐵 ) 𝐶 d 𝑥 ) |