Step |
Hyp |
Ref |
Expression |
1 |
|
ditgsplit.x |
⊢ ( 𝜑 → 𝑋 ∈ ℝ ) |
2 |
|
ditgsplit.y |
⊢ ( 𝜑 → 𝑌 ∈ ℝ ) |
3 |
|
ditgsplit.a |
⊢ ( 𝜑 → 𝐴 ∈ ( 𝑋 [,] 𝑌 ) ) |
4 |
|
ditgsplit.b |
⊢ ( 𝜑 → 𝐵 ∈ ( 𝑋 [,] 𝑌 ) ) |
5 |
|
ditgsplit.c |
⊢ ( 𝜑 → 𝐶 ∈ ( 𝑋 [,] 𝑌 ) ) |
6 |
|
ditgsplit.d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ) → 𝐷 ∈ 𝑉 ) |
7 |
|
ditgsplit.i |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐷 ) ∈ 𝐿1 ) |
8 |
|
elicc2 |
⊢ ( ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) → ( 𝐴 ∈ ( 𝑋 [,] 𝑌 ) ↔ ( 𝐴 ∈ ℝ ∧ 𝑋 ≤ 𝐴 ∧ 𝐴 ≤ 𝑌 ) ) ) |
9 |
1 2 8
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 ∈ ( 𝑋 [,] 𝑌 ) ↔ ( 𝐴 ∈ ℝ ∧ 𝑋 ≤ 𝐴 ∧ 𝐴 ≤ 𝑌 ) ) ) |
10 |
3 9
|
mpbid |
⊢ ( 𝜑 → ( 𝐴 ∈ ℝ ∧ 𝑋 ≤ 𝐴 ∧ 𝐴 ≤ 𝑌 ) ) |
11 |
10
|
simp1d |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
12 |
|
elicc2 |
⊢ ( ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) → ( 𝐵 ∈ ( 𝑋 [,] 𝑌 ) ↔ ( 𝐵 ∈ ℝ ∧ 𝑋 ≤ 𝐵 ∧ 𝐵 ≤ 𝑌 ) ) ) |
13 |
1 2 12
|
syl2anc |
⊢ ( 𝜑 → ( 𝐵 ∈ ( 𝑋 [,] 𝑌 ) ↔ ( 𝐵 ∈ ℝ ∧ 𝑋 ≤ 𝐵 ∧ 𝐵 ≤ 𝑌 ) ) ) |
14 |
4 13
|
mpbid |
⊢ ( 𝜑 → ( 𝐵 ∈ ℝ ∧ 𝑋 ≤ 𝐵 ∧ 𝐵 ≤ 𝑌 ) ) |
15 |
14
|
simp1d |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
16 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) → 𝐴 ∈ ℝ ) |
17 |
|
elicc2 |
⊢ ( ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) → ( 𝐶 ∈ ( 𝑋 [,] 𝑌 ) ↔ ( 𝐶 ∈ ℝ ∧ 𝑋 ≤ 𝐶 ∧ 𝐶 ≤ 𝑌 ) ) ) |
18 |
1 2 17
|
syl2anc |
⊢ ( 𝜑 → ( 𝐶 ∈ ( 𝑋 [,] 𝑌 ) ↔ ( 𝐶 ∈ ℝ ∧ 𝑋 ≤ 𝐶 ∧ 𝐶 ≤ 𝑌 ) ) ) |
19 |
5 18
|
mpbid |
⊢ ( 𝜑 → ( 𝐶 ∈ ℝ ∧ 𝑋 ≤ 𝐶 ∧ 𝐶 ≤ 𝑌 ) ) |
20 |
19
|
simp1d |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
21 |
20
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) → 𝐶 ∈ ℝ ) |
22 |
15
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) ∧ 𝐴 ≤ 𝐶 ) → 𝐵 ∈ ℝ ) |
23 |
20
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) ∧ 𝐴 ≤ 𝐶 ) → 𝐶 ∈ ℝ ) |
24 |
|
biid |
⊢ ( ( 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶 ) ↔ ( 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶 ) ) |
25 |
1 2 3 4 5 6 7 24
|
ditgsplitlem |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) ∧ 𝐵 ≤ 𝐶 ) → ⨜ [ 𝐴 → 𝐶 ] 𝐷 d 𝑥 = ( ⨜ [ 𝐴 → 𝐵 ] 𝐷 d 𝑥 + ⨜ [ 𝐵 → 𝐶 ] 𝐷 d 𝑥 ) ) |
26 |
25
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) ∧ 𝐴 ≤ 𝐶 ) ∧ 𝐵 ≤ 𝐶 ) → ⨜ [ 𝐴 → 𝐶 ] 𝐷 d 𝑥 = ( ⨜ [ 𝐴 → 𝐵 ] 𝐷 d 𝑥 + ⨜ [ 𝐵 → 𝐶 ] 𝐷 d 𝑥 ) ) |
27 |
|
biid |
⊢ ( ( 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵 ) ↔ ( 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵 ) ) |
28 |
1 2 3 5 4 6 7 27
|
ditgsplitlem |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≤ 𝐶 ) ∧ 𝐶 ≤ 𝐵 ) → ⨜ [ 𝐴 → 𝐵 ] 𝐷 d 𝑥 = ( ⨜ [ 𝐴 → 𝐶 ] 𝐷 d 𝑥 + ⨜ [ 𝐶 → 𝐵 ] 𝐷 d 𝑥 ) ) |
29 |
28
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≤ 𝐶 ) ∧ 𝐶 ≤ 𝐵 ) → ( ⨜ [ 𝐴 → 𝐵 ] 𝐷 d 𝑥 + ⨜ [ 𝐵 → 𝐶 ] 𝐷 d 𝑥 ) = ( ( ⨜ [ 𝐴 → 𝐶 ] 𝐷 d 𝑥 + ⨜ [ 𝐶 → 𝐵 ] 𝐷 d 𝑥 ) + ⨜ [ 𝐵 → 𝐶 ] 𝐷 d 𝑥 ) ) |
30 |
1 2 3 5 6 7
|
ditgcl |
⊢ ( 𝜑 → ⨜ [ 𝐴 → 𝐶 ] 𝐷 d 𝑥 ∈ ℂ ) |
31 |
1 2 5 4 6 7
|
ditgcl |
⊢ ( 𝜑 → ⨜ [ 𝐶 → 𝐵 ] 𝐷 d 𝑥 ∈ ℂ ) |
32 |
1 2 4 5 6 7
|
ditgcl |
⊢ ( 𝜑 → ⨜ [ 𝐵 → 𝐶 ] 𝐷 d 𝑥 ∈ ℂ ) |
33 |
30 31 32
|
addassd |
⊢ ( 𝜑 → ( ( ⨜ [ 𝐴 → 𝐶 ] 𝐷 d 𝑥 + ⨜ [ 𝐶 → 𝐵 ] 𝐷 d 𝑥 ) + ⨜ [ 𝐵 → 𝐶 ] 𝐷 d 𝑥 ) = ( ⨜ [ 𝐴 → 𝐶 ] 𝐷 d 𝑥 + ( ⨜ [ 𝐶 → 𝐵 ] 𝐷 d 𝑥 + ⨜ [ 𝐵 → 𝐶 ] 𝐷 d 𝑥 ) ) ) |
34 |
1 2 5 4 6 7
|
ditgswap |
⊢ ( 𝜑 → ⨜ [ 𝐵 → 𝐶 ] 𝐷 d 𝑥 = - ⨜ [ 𝐶 → 𝐵 ] 𝐷 d 𝑥 ) |
35 |
34
|
oveq2d |
⊢ ( 𝜑 → ( ⨜ [ 𝐶 → 𝐵 ] 𝐷 d 𝑥 + ⨜ [ 𝐵 → 𝐶 ] 𝐷 d 𝑥 ) = ( ⨜ [ 𝐶 → 𝐵 ] 𝐷 d 𝑥 + - ⨜ [ 𝐶 → 𝐵 ] 𝐷 d 𝑥 ) ) |
36 |
31
|
negidd |
⊢ ( 𝜑 → ( ⨜ [ 𝐶 → 𝐵 ] 𝐷 d 𝑥 + - ⨜ [ 𝐶 → 𝐵 ] 𝐷 d 𝑥 ) = 0 ) |
37 |
35 36
|
eqtrd |
⊢ ( 𝜑 → ( ⨜ [ 𝐶 → 𝐵 ] 𝐷 d 𝑥 + ⨜ [ 𝐵 → 𝐶 ] 𝐷 d 𝑥 ) = 0 ) |
38 |
37
|
oveq2d |
⊢ ( 𝜑 → ( ⨜ [ 𝐴 → 𝐶 ] 𝐷 d 𝑥 + ( ⨜ [ 𝐶 → 𝐵 ] 𝐷 d 𝑥 + ⨜ [ 𝐵 → 𝐶 ] 𝐷 d 𝑥 ) ) = ( ⨜ [ 𝐴 → 𝐶 ] 𝐷 d 𝑥 + 0 ) ) |
39 |
30
|
addid1d |
⊢ ( 𝜑 → ( ⨜ [ 𝐴 → 𝐶 ] 𝐷 d 𝑥 + 0 ) = ⨜ [ 𝐴 → 𝐶 ] 𝐷 d 𝑥 ) |
40 |
33 38 39
|
3eqtrd |
⊢ ( 𝜑 → ( ( ⨜ [ 𝐴 → 𝐶 ] 𝐷 d 𝑥 + ⨜ [ 𝐶 → 𝐵 ] 𝐷 d 𝑥 ) + ⨜ [ 𝐵 → 𝐶 ] 𝐷 d 𝑥 ) = ⨜ [ 𝐴 → 𝐶 ] 𝐷 d 𝑥 ) |
41 |
40
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≤ 𝐶 ) ∧ 𝐶 ≤ 𝐵 ) → ( ( ⨜ [ 𝐴 → 𝐶 ] 𝐷 d 𝑥 + ⨜ [ 𝐶 → 𝐵 ] 𝐷 d 𝑥 ) + ⨜ [ 𝐵 → 𝐶 ] 𝐷 d 𝑥 ) = ⨜ [ 𝐴 → 𝐶 ] 𝐷 d 𝑥 ) |
42 |
29 41
|
eqtr2d |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≤ 𝐶 ) ∧ 𝐶 ≤ 𝐵 ) → ⨜ [ 𝐴 → 𝐶 ] 𝐷 d 𝑥 = ( ⨜ [ 𝐴 → 𝐵 ] 𝐷 d 𝑥 + ⨜ [ 𝐵 → 𝐶 ] 𝐷 d 𝑥 ) ) |
43 |
42
|
adantllr |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) ∧ 𝐴 ≤ 𝐶 ) ∧ 𝐶 ≤ 𝐵 ) → ⨜ [ 𝐴 → 𝐶 ] 𝐷 d 𝑥 = ( ⨜ [ 𝐴 → 𝐵 ] 𝐷 d 𝑥 + ⨜ [ 𝐵 → 𝐶 ] 𝐷 d 𝑥 ) ) |
44 |
22 23 26 43
|
lecasei |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) ∧ 𝐴 ≤ 𝐶 ) → ⨜ [ 𝐴 → 𝐶 ] 𝐷 d 𝑥 = ( ⨜ [ 𝐴 → 𝐵 ] 𝐷 d 𝑥 + ⨜ [ 𝐵 → 𝐶 ] 𝐷 d 𝑥 ) ) |
45 |
40
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) ∧ 𝐶 ≤ 𝐴 ) → ( ( ⨜ [ 𝐴 → 𝐶 ] 𝐷 d 𝑥 + ⨜ [ 𝐶 → 𝐵 ] 𝐷 d 𝑥 ) + ⨜ [ 𝐵 → 𝐶 ] 𝐷 d 𝑥 ) = ⨜ [ 𝐴 → 𝐶 ] 𝐷 d 𝑥 ) |
46 |
|
ancom |
⊢ ( ( 𝐴 ≤ 𝐵 ∧ 𝐶 ≤ 𝐴 ) ↔ ( 𝐶 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵 ) ) |
47 |
1 2 5 3 4 6 7 46
|
ditgsplitlem |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) ∧ 𝐶 ≤ 𝐴 ) → ⨜ [ 𝐶 → 𝐵 ] 𝐷 d 𝑥 = ( ⨜ [ 𝐶 → 𝐴 ] 𝐷 d 𝑥 + ⨜ [ 𝐴 → 𝐵 ] 𝐷 d 𝑥 ) ) |
48 |
47
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) ∧ 𝐶 ≤ 𝐴 ) → ( ⨜ [ 𝐴 → 𝐶 ] 𝐷 d 𝑥 + ⨜ [ 𝐶 → 𝐵 ] 𝐷 d 𝑥 ) = ( ⨜ [ 𝐴 → 𝐶 ] 𝐷 d 𝑥 + ( ⨜ [ 𝐶 → 𝐴 ] 𝐷 d 𝑥 + ⨜ [ 𝐴 → 𝐵 ] 𝐷 d 𝑥 ) ) ) |
49 |
1 2 3 5 6 7
|
ditgswap |
⊢ ( 𝜑 → ⨜ [ 𝐶 → 𝐴 ] 𝐷 d 𝑥 = - ⨜ [ 𝐴 → 𝐶 ] 𝐷 d 𝑥 ) |
50 |
49
|
oveq2d |
⊢ ( 𝜑 → ( ⨜ [ 𝐴 → 𝐶 ] 𝐷 d 𝑥 + ⨜ [ 𝐶 → 𝐴 ] 𝐷 d 𝑥 ) = ( ⨜ [ 𝐴 → 𝐶 ] 𝐷 d 𝑥 + - ⨜ [ 𝐴 → 𝐶 ] 𝐷 d 𝑥 ) ) |
51 |
30
|
negidd |
⊢ ( 𝜑 → ( ⨜ [ 𝐴 → 𝐶 ] 𝐷 d 𝑥 + - ⨜ [ 𝐴 → 𝐶 ] 𝐷 d 𝑥 ) = 0 ) |
52 |
50 51
|
eqtrd |
⊢ ( 𝜑 → ( ⨜ [ 𝐴 → 𝐶 ] 𝐷 d 𝑥 + ⨜ [ 𝐶 → 𝐴 ] 𝐷 d 𝑥 ) = 0 ) |
53 |
52
|
oveq1d |
⊢ ( 𝜑 → ( ( ⨜ [ 𝐴 → 𝐶 ] 𝐷 d 𝑥 + ⨜ [ 𝐶 → 𝐴 ] 𝐷 d 𝑥 ) + ⨜ [ 𝐴 → 𝐵 ] 𝐷 d 𝑥 ) = ( 0 + ⨜ [ 𝐴 → 𝐵 ] 𝐷 d 𝑥 ) ) |
54 |
1 2 5 3 6 7
|
ditgcl |
⊢ ( 𝜑 → ⨜ [ 𝐶 → 𝐴 ] 𝐷 d 𝑥 ∈ ℂ ) |
55 |
1 2 3 4 6 7
|
ditgcl |
⊢ ( 𝜑 → ⨜ [ 𝐴 → 𝐵 ] 𝐷 d 𝑥 ∈ ℂ ) |
56 |
30 54 55
|
addassd |
⊢ ( 𝜑 → ( ( ⨜ [ 𝐴 → 𝐶 ] 𝐷 d 𝑥 + ⨜ [ 𝐶 → 𝐴 ] 𝐷 d 𝑥 ) + ⨜ [ 𝐴 → 𝐵 ] 𝐷 d 𝑥 ) = ( ⨜ [ 𝐴 → 𝐶 ] 𝐷 d 𝑥 + ( ⨜ [ 𝐶 → 𝐴 ] 𝐷 d 𝑥 + ⨜ [ 𝐴 → 𝐵 ] 𝐷 d 𝑥 ) ) ) |
57 |
55
|
addid2d |
⊢ ( 𝜑 → ( 0 + ⨜ [ 𝐴 → 𝐵 ] 𝐷 d 𝑥 ) = ⨜ [ 𝐴 → 𝐵 ] 𝐷 d 𝑥 ) |
58 |
53 56 57
|
3eqtr3d |
⊢ ( 𝜑 → ( ⨜ [ 𝐴 → 𝐶 ] 𝐷 d 𝑥 + ( ⨜ [ 𝐶 → 𝐴 ] 𝐷 d 𝑥 + ⨜ [ 𝐴 → 𝐵 ] 𝐷 d 𝑥 ) ) = ⨜ [ 𝐴 → 𝐵 ] 𝐷 d 𝑥 ) |
59 |
58
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) ∧ 𝐶 ≤ 𝐴 ) → ( ⨜ [ 𝐴 → 𝐶 ] 𝐷 d 𝑥 + ( ⨜ [ 𝐶 → 𝐴 ] 𝐷 d 𝑥 + ⨜ [ 𝐴 → 𝐵 ] 𝐷 d 𝑥 ) ) = ⨜ [ 𝐴 → 𝐵 ] 𝐷 d 𝑥 ) |
60 |
48 59
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) ∧ 𝐶 ≤ 𝐴 ) → ( ⨜ [ 𝐴 → 𝐶 ] 𝐷 d 𝑥 + ⨜ [ 𝐶 → 𝐵 ] 𝐷 d 𝑥 ) = ⨜ [ 𝐴 → 𝐵 ] 𝐷 d 𝑥 ) |
61 |
60
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) ∧ 𝐶 ≤ 𝐴 ) → ( ( ⨜ [ 𝐴 → 𝐶 ] 𝐷 d 𝑥 + ⨜ [ 𝐶 → 𝐵 ] 𝐷 d 𝑥 ) + ⨜ [ 𝐵 → 𝐶 ] 𝐷 d 𝑥 ) = ( ⨜ [ 𝐴 → 𝐵 ] 𝐷 d 𝑥 + ⨜ [ 𝐵 → 𝐶 ] 𝐷 d 𝑥 ) ) |
62 |
45 61
|
eqtr3d |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) ∧ 𝐶 ≤ 𝐴 ) → ⨜ [ 𝐴 → 𝐶 ] 𝐷 d 𝑥 = ( ⨜ [ 𝐴 → 𝐵 ] 𝐷 d 𝑥 + ⨜ [ 𝐵 → 𝐶 ] 𝐷 d 𝑥 ) ) |
63 |
16 21 44 62
|
lecasei |
⊢ ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) → ⨜ [ 𝐴 → 𝐶 ] 𝐷 d 𝑥 = ( ⨜ [ 𝐴 → 𝐵 ] 𝐷 d 𝑥 + ⨜ [ 𝐵 → 𝐶 ] 𝐷 d 𝑥 ) ) |
64 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ≤ 𝐴 ) → 𝐴 ∈ ℝ ) |
65 |
20
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ≤ 𝐴 ) → 𝐶 ∈ ℝ ) |
66 |
|
biid |
⊢ ( ( 𝐵 ≤ 𝐴 ∧ 𝐴 ≤ 𝐶 ) ↔ ( 𝐵 ≤ 𝐴 ∧ 𝐴 ≤ 𝐶 ) ) |
67 |
1 2 4 3 5 6 7 66
|
ditgsplitlem |
⊢ ( ( ( 𝜑 ∧ 𝐵 ≤ 𝐴 ) ∧ 𝐴 ≤ 𝐶 ) → ⨜ [ 𝐵 → 𝐶 ] 𝐷 d 𝑥 = ( ⨜ [ 𝐵 → 𝐴 ] 𝐷 d 𝑥 + ⨜ [ 𝐴 → 𝐶 ] 𝐷 d 𝑥 ) ) |
68 |
67
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝐵 ≤ 𝐴 ) ∧ 𝐴 ≤ 𝐶 ) → ( ⨜ [ 𝐴 → 𝐵 ] 𝐷 d 𝑥 + ⨜ [ 𝐵 → 𝐶 ] 𝐷 d 𝑥 ) = ( ⨜ [ 𝐴 → 𝐵 ] 𝐷 d 𝑥 + ( ⨜ [ 𝐵 → 𝐴 ] 𝐷 d 𝑥 + ⨜ [ 𝐴 → 𝐶 ] 𝐷 d 𝑥 ) ) ) |
69 |
1 2 3 4 6 7
|
ditgswap |
⊢ ( 𝜑 → ⨜ [ 𝐵 → 𝐴 ] 𝐷 d 𝑥 = - ⨜ [ 𝐴 → 𝐵 ] 𝐷 d 𝑥 ) |
70 |
69
|
oveq2d |
⊢ ( 𝜑 → ( ⨜ [ 𝐴 → 𝐵 ] 𝐷 d 𝑥 + ⨜ [ 𝐵 → 𝐴 ] 𝐷 d 𝑥 ) = ( ⨜ [ 𝐴 → 𝐵 ] 𝐷 d 𝑥 + - ⨜ [ 𝐴 → 𝐵 ] 𝐷 d 𝑥 ) ) |
71 |
55
|
negidd |
⊢ ( 𝜑 → ( ⨜ [ 𝐴 → 𝐵 ] 𝐷 d 𝑥 + - ⨜ [ 𝐴 → 𝐵 ] 𝐷 d 𝑥 ) = 0 ) |
72 |
70 71
|
eqtrd |
⊢ ( 𝜑 → ( ⨜ [ 𝐴 → 𝐵 ] 𝐷 d 𝑥 + ⨜ [ 𝐵 → 𝐴 ] 𝐷 d 𝑥 ) = 0 ) |
73 |
72
|
oveq1d |
⊢ ( 𝜑 → ( ( ⨜ [ 𝐴 → 𝐵 ] 𝐷 d 𝑥 + ⨜ [ 𝐵 → 𝐴 ] 𝐷 d 𝑥 ) + ⨜ [ 𝐴 → 𝐶 ] 𝐷 d 𝑥 ) = ( 0 + ⨜ [ 𝐴 → 𝐶 ] 𝐷 d 𝑥 ) ) |
74 |
1 2 4 3 6 7
|
ditgcl |
⊢ ( 𝜑 → ⨜ [ 𝐵 → 𝐴 ] 𝐷 d 𝑥 ∈ ℂ ) |
75 |
55 74 30
|
addassd |
⊢ ( 𝜑 → ( ( ⨜ [ 𝐴 → 𝐵 ] 𝐷 d 𝑥 + ⨜ [ 𝐵 → 𝐴 ] 𝐷 d 𝑥 ) + ⨜ [ 𝐴 → 𝐶 ] 𝐷 d 𝑥 ) = ( ⨜ [ 𝐴 → 𝐵 ] 𝐷 d 𝑥 + ( ⨜ [ 𝐵 → 𝐴 ] 𝐷 d 𝑥 + ⨜ [ 𝐴 → 𝐶 ] 𝐷 d 𝑥 ) ) ) |
76 |
30
|
addid2d |
⊢ ( 𝜑 → ( 0 + ⨜ [ 𝐴 → 𝐶 ] 𝐷 d 𝑥 ) = ⨜ [ 𝐴 → 𝐶 ] 𝐷 d 𝑥 ) |
77 |
73 75 76
|
3eqtr3d |
⊢ ( 𝜑 → ( ⨜ [ 𝐴 → 𝐵 ] 𝐷 d 𝑥 + ( ⨜ [ 𝐵 → 𝐴 ] 𝐷 d 𝑥 + ⨜ [ 𝐴 → 𝐶 ] 𝐷 d 𝑥 ) ) = ⨜ [ 𝐴 → 𝐶 ] 𝐷 d 𝑥 ) |
78 |
77
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐵 ≤ 𝐴 ) ∧ 𝐴 ≤ 𝐶 ) → ( ⨜ [ 𝐴 → 𝐵 ] 𝐷 d 𝑥 + ( ⨜ [ 𝐵 → 𝐴 ] 𝐷 d 𝑥 + ⨜ [ 𝐴 → 𝐶 ] 𝐷 d 𝑥 ) ) = ⨜ [ 𝐴 → 𝐶 ] 𝐷 d 𝑥 ) |
79 |
68 78
|
eqtr2d |
⊢ ( ( ( 𝜑 ∧ 𝐵 ≤ 𝐴 ) ∧ 𝐴 ≤ 𝐶 ) → ⨜ [ 𝐴 → 𝐶 ] 𝐷 d 𝑥 = ( ⨜ [ 𝐴 → 𝐵 ] 𝐷 d 𝑥 + ⨜ [ 𝐵 → 𝐶 ] 𝐷 d 𝑥 ) ) |
80 |
15
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐵 ≤ 𝐴 ) ∧ 𝐶 ≤ 𝐴 ) → 𝐵 ∈ ℝ ) |
81 |
20
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐵 ≤ 𝐴 ) ∧ 𝐶 ≤ 𝐴 ) → 𝐶 ∈ ℝ ) |
82 |
|
ancom |
⊢ ( ( 𝐶 ≤ 𝐴 ∧ 𝐵 ≤ 𝐶 ) ↔ ( 𝐵 ≤ 𝐶 ∧ 𝐶 ≤ 𝐴 ) ) |
83 |
1 2 4 5 3 6 7 82
|
ditgsplitlem |
⊢ ( ( ( 𝜑 ∧ 𝐶 ≤ 𝐴 ) ∧ 𝐵 ≤ 𝐶 ) → ⨜ [ 𝐵 → 𝐴 ] 𝐷 d 𝑥 = ( ⨜ [ 𝐵 → 𝐶 ] 𝐷 d 𝑥 + ⨜ [ 𝐶 → 𝐴 ] 𝐷 d 𝑥 ) ) |
84 |
83
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝐶 ≤ 𝐴 ) ∧ 𝐵 ≤ 𝐶 ) → ( ⨜ [ 𝐵 → 𝐴 ] 𝐷 d 𝑥 + ⨜ [ 𝐴 → 𝐶 ] 𝐷 d 𝑥 ) = ( ( ⨜ [ 𝐵 → 𝐶 ] 𝐷 d 𝑥 + ⨜ [ 𝐶 → 𝐴 ] 𝐷 d 𝑥 ) + ⨜ [ 𝐴 → 𝐶 ] 𝐷 d 𝑥 ) ) |
85 |
32 54 30
|
addassd |
⊢ ( 𝜑 → ( ( ⨜ [ 𝐵 → 𝐶 ] 𝐷 d 𝑥 + ⨜ [ 𝐶 → 𝐴 ] 𝐷 d 𝑥 ) + ⨜ [ 𝐴 → 𝐶 ] 𝐷 d 𝑥 ) = ( ⨜ [ 𝐵 → 𝐶 ] 𝐷 d 𝑥 + ( ⨜ [ 𝐶 → 𝐴 ] 𝐷 d 𝑥 + ⨜ [ 𝐴 → 𝐶 ] 𝐷 d 𝑥 ) ) ) |
86 |
1 2 5 3 6 7
|
ditgswap |
⊢ ( 𝜑 → ⨜ [ 𝐴 → 𝐶 ] 𝐷 d 𝑥 = - ⨜ [ 𝐶 → 𝐴 ] 𝐷 d 𝑥 ) |
87 |
86
|
oveq2d |
⊢ ( 𝜑 → ( ⨜ [ 𝐶 → 𝐴 ] 𝐷 d 𝑥 + ⨜ [ 𝐴 → 𝐶 ] 𝐷 d 𝑥 ) = ( ⨜ [ 𝐶 → 𝐴 ] 𝐷 d 𝑥 + - ⨜ [ 𝐶 → 𝐴 ] 𝐷 d 𝑥 ) ) |
88 |
54
|
negidd |
⊢ ( 𝜑 → ( ⨜ [ 𝐶 → 𝐴 ] 𝐷 d 𝑥 + - ⨜ [ 𝐶 → 𝐴 ] 𝐷 d 𝑥 ) = 0 ) |
89 |
87 88
|
eqtrd |
⊢ ( 𝜑 → ( ⨜ [ 𝐶 → 𝐴 ] 𝐷 d 𝑥 + ⨜ [ 𝐴 → 𝐶 ] 𝐷 d 𝑥 ) = 0 ) |
90 |
89
|
oveq2d |
⊢ ( 𝜑 → ( ⨜ [ 𝐵 → 𝐶 ] 𝐷 d 𝑥 + ( ⨜ [ 𝐶 → 𝐴 ] 𝐷 d 𝑥 + ⨜ [ 𝐴 → 𝐶 ] 𝐷 d 𝑥 ) ) = ( ⨜ [ 𝐵 → 𝐶 ] 𝐷 d 𝑥 + 0 ) ) |
91 |
32
|
addid1d |
⊢ ( 𝜑 → ( ⨜ [ 𝐵 → 𝐶 ] 𝐷 d 𝑥 + 0 ) = ⨜ [ 𝐵 → 𝐶 ] 𝐷 d 𝑥 ) |
92 |
85 90 91
|
3eqtrd |
⊢ ( 𝜑 → ( ( ⨜ [ 𝐵 → 𝐶 ] 𝐷 d 𝑥 + ⨜ [ 𝐶 → 𝐴 ] 𝐷 d 𝑥 ) + ⨜ [ 𝐴 → 𝐶 ] 𝐷 d 𝑥 ) = ⨜ [ 𝐵 → 𝐶 ] 𝐷 d 𝑥 ) |
93 |
92
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐶 ≤ 𝐴 ) ∧ 𝐵 ≤ 𝐶 ) → ( ( ⨜ [ 𝐵 → 𝐶 ] 𝐷 d 𝑥 + ⨜ [ 𝐶 → 𝐴 ] 𝐷 d 𝑥 ) + ⨜ [ 𝐴 → 𝐶 ] 𝐷 d 𝑥 ) = ⨜ [ 𝐵 → 𝐶 ] 𝐷 d 𝑥 ) |
94 |
84 93
|
eqtr2d |
⊢ ( ( ( 𝜑 ∧ 𝐶 ≤ 𝐴 ) ∧ 𝐵 ≤ 𝐶 ) → ⨜ [ 𝐵 → 𝐶 ] 𝐷 d 𝑥 = ( ⨜ [ 𝐵 → 𝐴 ] 𝐷 d 𝑥 + ⨜ [ 𝐴 → 𝐶 ] 𝐷 d 𝑥 ) ) |
95 |
94
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝐶 ≤ 𝐴 ) ∧ 𝐵 ≤ 𝐶 ) → ( ⨜ [ 𝐴 → 𝐵 ] 𝐷 d 𝑥 + ⨜ [ 𝐵 → 𝐶 ] 𝐷 d 𝑥 ) = ( ⨜ [ 𝐴 → 𝐵 ] 𝐷 d 𝑥 + ( ⨜ [ 𝐵 → 𝐴 ] 𝐷 d 𝑥 + ⨜ [ 𝐴 → 𝐶 ] 𝐷 d 𝑥 ) ) ) |
96 |
77
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐶 ≤ 𝐴 ) ∧ 𝐵 ≤ 𝐶 ) → ( ⨜ [ 𝐴 → 𝐵 ] 𝐷 d 𝑥 + ( ⨜ [ 𝐵 → 𝐴 ] 𝐷 d 𝑥 + ⨜ [ 𝐴 → 𝐶 ] 𝐷 d 𝑥 ) ) = ⨜ [ 𝐴 → 𝐶 ] 𝐷 d 𝑥 ) |
97 |
95 96
|
eqtr2d |
⊢ ( ( ( 𝜑 ∧ 𝐶 ≤ 𝐴 ) ∧ 𝐵 ≤ 𝐶 ) → ⨜ [ 𝐴 → 𝐶 ] 𝐷 d 𝑥 = ( ⨜ [ 𝐴 → 𝐵 ] 𝐷 d 𝑥 + ⨜ [ 𝐵 → 𝐶 ] 𝐷 d 𝑥 ) ) |
98 |
97
|
adantllr |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≤ 𝐴 ) ∧ 𝐶 ≤ 𝐴 ) ∧ 𝐵 ≤ 𝐶 ) → ⨜ [ 𝐴 → 𝐶 ] 𝐷 d 𝑥 = ( ⨜ [ 𝐴 → 𝐵 ] 𝐷 d 𝑥 + ⨜ [ 𝐵 → 𝐶 ] 𝐷 d 𝑥 ) ) |
99 |
|
ancom |
⊢ ( ( 𝐵 ≤ 𝐴 ∧ 𝐶 ≤ 𝐵 ) ↔ ( 𝐶 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴 ) ) |
100 |
1 2 5 4 3 6 7 99
|
ditgsplitlem |
⊢ ( ( ( 𝜑 ∧ 𝐵 ≤ 𝐴 ) ∧ 𝐶 ≤ 𝐵 ) → ⨜ [ 𝐶 → 𝐴 ] 𝐷 d 𝑥 = ( ⨜ [ 𝐶 → 𝐵 ] 𝐷 d 𝑥 + ⨜ [ 𝐵 → 𝐴 ] 𝐷 d 𝑥 ) ) |
101 |
100
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝐵 ≤ 𝐴 ) ∧ 𝐶 ≤ 𝐵 ) → ( ⨜ [ 𝐶 → 𝐴 ] 𝐷 d 𝑥 + ⨜ [ 𝐴 → 𝐵 ] 𝐷 d 𝑥 ) = ( ( ⨜ [ 𝐶 → 𝐵 ] 𝐷 d 𝑥 + ⨜ [ 𝐵 → 𝐴 ] 𝐷 d 𝑥 ) + ⨜ [ 𝐴 → 𝐵 ] 𝐷 d 𝑥 ) ) |
102 |
31 74 55
|
addassd |
⊢ ( 𝜑 → ( ( ⨜ [ 𝐶 → 𝐵 ] 𝐷 d 𝑥 + ⨜ [ 𝐵 → 𝐴 ] 𝐷 d 𝑥 ) + ⨜ [ 𝐴 → 𝐵 ] 𝐷 d 𝑥 ) = ( ⨜ [ 𝐶 → 𝐵 ] 𝐷 d 𝑥 + ( ⨜ [ 𝐵 → 𝐴 ] 𝐷 d 𝑥 + ⨜ [ 𝐴 → 𝐵 ] 𝐷 d 𝑥 ) ) ) |
103 |
1 2 4 3 6 7
|
ditgswap |
⊢ ( 𝜑 → ⨜ [ 𝐴 → 𝐵 ] 𝐷 d 𝑥 = - ⨜ [ 𝐵 → 𝐴 ] 𝐷 d 𝑥 ) |
104 |
103
|
oveq2d |
⊢ ( 𝜑 → ( ⨜ [ 𝐵 → 𝐴 ] 𝐷 d 𝑥 + ⨜ [ 𝐴 → 𝐵 ] 𝐷 d 𝑥 ) = ( ⨜ [ 𝐵 → 𝐴 ] 𝐷 d 𝑥 + - ⨜ [ 𝐵 → 𝐴 ] 𝐷 d 𝑥 ) ) |
105 |
74
|
negidd |
⊢ ( 𝜑 → ( ⨜ [ 𝐵 → 𝐴 ] 𝐷 d 𝑥 + - ⨜ [ 𝐵 → 𝐴 ] 𝐷 d 𝑥 ) = 0 ) |
106 |
104 105
|
eqtrd |
⊢ ( 𝜑 → ( ⨜ [ 𝐵 → 𝐴 ] 𝐷 d 𝑥 + ⨜ [ 𝐴 → 𝐵 ] 𝐷 d 𝑥 ) = 0 ) |
107 |
106
|
oveq2d |
⊢ ( 𝜑 → ( ⨜ [ 𝐶 → 𝐵 ] 𝐷 d 𝑥 + ( ⨜ [ 𝐵 → 𝐴 ] 𝐷 d 𝑥 + ⨜ [ 𝐴 → 𝐵 ] 𝐷 d 𝑥 ) ) = ( ⨜ [ 𝐶 → 𝐵 ] 𝐷 d 𝑥 + 0 ) ) |
108 |
31
|
addid1d |
⊢ ( 𝜑 → ( ⨜ [ 𝐶 → 𝐵 ] 𝐷 d 𝑥 + 0 ) = ⨜ [ 𝐶 → 𝐵 ] 𝐷 d 𝑥 ) |
109 |
102 107 108
|
3eqtrd |
⊢ ( 𝜑 → ( ( ⨜ [ 𝐶 → 𝐵 ] 𝐷 d 𝑥 + ⨜ [ 𝐵 → 𝐴 ] 𝐷 d 𝑥 ) + ⨜ [ 𝐴 → 𝐵 ] 𝐷 d 𝑥 ) = ⨜ [ 𝐶 → 𝐵 ] 𝐷 d 𝑥 ) |
110 |
109
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐵 ≤ 𝐴 ) ∧ 𝐶 ≤ 𝐵 ) → ( ( ⨜ [ 𝐶 → 𝐵 ] 𝐷 d 𝑥 + ⨜ [ 𝐵 → 𝐴 ] 𝐷 d 𝑥 ) + ⨜ [ 𝐴 → 𝐵 ] 𝐷 d 𝑥 ) = ⨜ [ 𝐶 → 𝐵 ] 𝐷 d 𝑥 ) |
111 |
101 110
|
eqtr2d |
⊢ ( ( ( 𝜑 ∧ 𝐵 ≤ 𝐴 ) ∧ 𝐶 ≤ 𝐵 ) → ⨜ [ 𝐶 → 𝐵 ] 𝐷 d 𝑥 = ( ⨜ [ 𝐶 → 𝐴 ] 𝐷 d 𝑥 + ⨜ [ 𝐴 → 𝐵 ] 𝐷 d 𝑥 ) ) |
112 |
111
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝐵 ≤ 𝐴 ) ∧ 𝐶 ≤ 𝐵 ) → ( ⨜ [ 𝐴 → 𝐶 ] 𝐷 d 𝑥 + ⨜ [ 𝐶 → 𝐵 ] 𝐷 d 𝑥 ) = ( ⨜ [ 𝐴 → 𝐶 ] 𝐷 d 𝑥 + ( ⨜ [ 𝐶 → 𝐴 ] 𝐷 d 𝑥 + ⨜ [ 𝐴 → 𝐵 ] 𝐷 d 𝑥 ) ) ) |
113 |
58
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐵 ≤ 𝐴 ) ∧ 𝐶 ≤ 𝐵 ) → ( ⨜ [ 𝐴 → 𝐶 ] 𝐷 d 𝑥 + ( ⨜ [ 𝐶 → 𝐴 ] 𝐷 d 𝑥 + ⨜ [ 𝐴 → 𝐵 ] 𝐷 d 𝑥 ) ) = ⨜ [ 𝐴 → 𝐵 ] 𝐷 d 𝑥 ) |
114 |
112 113
|
eqtr2d |
⊢ ( ( ( 𝜑 ∧ 𝐵 ≤ 𝐴 ) ∧ 𝐶 ≤ 𝐵 ) → ⨜ [ 𝐴 → 𝐵 ] 𝐷 d 𝑥 = ( ⨜ [ 𝐴 → 𝐶 ] 𝐷 d 𝑥 + ⨜ [ 𝐶 → 𝐵 ] 𝐷 d 𝑥 ) ) |
115 |
114
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝐵 ≤ 𝐴 ) ∧ 𝐶 ≤ 𝐵 ) → ( ⨜ [ 𝐴 → 𝐵 ] 𝐷 d 𝑥 + ⨜ [ 𝐵 → 𝐶 ] 𝐷 d 𝑥 ) = ( ( ⨜ [ 𝐴 → 𝐶 ] 𝐷 d 𝑥 + ⨜ [ 𝐶 → 𝐵 ] 𝐷 d 𝑥 ) + ⨜ [ 𝐵 → 𝐶 ] 𝐷 d 𝑥 ) ) |
116 |
40
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐵 ≤ 𝐴 ) ∧ 𝐶 ≤ 𝐵 ) → ( ( ⨜ [ 𝐴 → 𝐶 ] 𝐷 d 𝑥 + ⨜ [ 𝐶 → 𝐵 ] 𝐷 d 𝑥 ) + ⨜ [ 𝐵 → 𝐶 ] 𝐷 d 𝑥 ) = ⨜ [ 𝐴 → 𝐶 ] 𝐷 d 𝑥 ) |
117 |
115 116
|
eqtr2d |
⊢ ( ( ( 𝜑 ∧ 𝐵 ≤ 𝐴 ) ∧ 𝐶 ≤ 𝐵 ) → ⨜ [ 𝐴 → 𝐶 ] 𝐷 d 𝑥 = ( ⨜ [ 𝐴 → 𝐵 ] 𝐷 d 𝑥 + ⨜ [ 𝐵 → 𝐶 ] 𝐷 d 𝑥 ) ) |
118 |
117
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≤ 𝐴 ) ∧ 𝐶 ≤ 𝐴 ) ∧ 𝐶 ≤ 𝐵 ) → ⨜ [ 𝐴 → 𝐶 ] 𝐷 d 𝑥 = ( ⨜ [ 𝐴 → 𝐵 ] 𝐷 d 𝑥 + ⨜ [ 𝐵 → 𝐶 ] 𝐷 d 𝑥 ) ) |
119 |
80 81 98 118
|
lecasei |
⊢ ( ( ( 𝜑 ∧ 𝐵 ≤ 𝐴 ) ∧ 𝐶 ≤ 𝐴 ) → ⨜ [ 𝐴 → 𝐶 ] 𝐷 d 𝑥 = ( ⨜ [ 𝐴 → 𝐵 ] 𝐷 d 𝑥 + ⨜ [ 𝐵 → 𝐶 ] 𝐷 d 𝑥 ) ) |
120 |
64 65 79 119
|
lecasei |
⊢ ( ( 𝜑 ∧ 𝐵 ≤ 𝐴 ) → ⨜ [ 𝐴 → 𝐶 ] 𝐷 d 𝑥 = ( ⨜ [ 𝐴 → 𝐵 ] 𝐷 d 𝑥 + ⨜ [ 𝐵 → 𝐶 ] 𝐷 d 𝑥 ) ) |
121 |
11 15 63 120
|
lecasei |
⊢ ( 𝜑 → ⨜ [ 𝐴 → 𝐶 ] 𝐷 d 𝑥 = ( ⨜ [ 𝐴 → 𝐵 ] 𝐷 d 𝑥 + ⨜ [ 𝐵 → 𝐶 ] 𝐷 d 𝑥 ) ) |