| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ditgsplit.x | ⊢ ( 𝜑  →  𝑋  ∈  ℝ ) | 
						
							| 2 |  | ditgsplit.y | ⊢ ( 𝜑  →  𝑌  ∈  ℝ ) | 
						
							| 3 |  | ditgsplit.a | ⊢ ( 𝜑  →  𝐴  ∈  ( 𝑋 [,] 𝑌 ) ) | 
						
							| 4 |  | ditgsplit.b | ⊢ ( 𝜑  →  𝐵  ∈  ( 𝑋 [,] 𝑌 ) ) | 
						
							| 5 |  | ditgsplit.c | ⊢ ( 𝜑  →  𝐶  ∈  ( 𝑋 [,] 𝑌 ) ) | 
						
							| 6 |  | ditgsplit.d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑋 (,) 𝑌 ) )  →  𝐷  ∈  𝑉 ) | 
						
							| 7 |  | ditgsplit.i | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝑋 (,) 𝑌 )  ↦  𝐷 )  ∈  𝐿1 ) | 
						
							| 8 |  | ditgsplit.1 | ⊢ ( ( 𝜓  ∧  𝜃 )  ↔  ( 𝐴  ≤  𝐵  ∧  𝐵  ≤  𝐶 ) ) | 
						
							| 9 |  | elicc2 | ⊢ ( ( 𝑋  ∈  ℝ  ∧  𝑌  ∈  ℝ )  →  ( 𝐴  ∈  ( 𝑋 [,] 𝑌 )  ↔  ( 𝐴  ∈  ℝ  ∧  𝑋  ≤  𝐴  ∧  𝐴  ≤  𝑌 ) ) ) | 
						
							| 10 | 1 2 9 | syl2anc | ⊢ ( 𝜑  →  ( 𝐴  ∈  ( 𝑋 [,] 𝑌 )  ↔  ( 𝐴  ∈  ℝ  ∧  𝑋  ≤  𝐴  ∧  𝐴  ≤  𝑌 ) ) ) | 
						
							| 11 | 3 10 | mpbid | ⊢ ( 𝜑  →  ( 𝐴  ∈  ℝ  ∧  𝑋  ≤  𝐴  ∧  𝐴  ≤  𝑌 ) ) | 
						
							| 12 | 11 | simp1d | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
						
							| 13 | 12 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝜓  ∧  𝜃 ) )  →  𝐴  ∈  ℝ ) | 
						
							| 14 |  | elicc2 | ⊢ ( ( 𝑋  ∈  ℝ  ∧  𝑌  ∈  ℝ )  →  ( 𝐶  ∈  ( 𝑋 [,] 𝑌 )  ↔  ( 𝐶  ∈  ℝ  ∧  𝑋  ≤  𝐶  ∧  𝐶  ≤  𝑌 ) ) ) | 
						
							| 15 | 1 2 14 | syl2anc | ⊢ ( 𝜑  →  ( 𝐶  ∈  ( 𝑋 [,] 𝑌 )  ↔  ( 𝐶  ∈  ℝ  ∧  𝑋  ≤  𝐶  ∧  𝐶  ≤  𝑌 ) ) ) | 
						
							| 16 | 5 15 | mpbid | ⊢ ( 𝜑  →  ( 𝐶  ∈  ℝ  ∧  𝑋  ≤  𝐶  ∧  𝐶  ≤  𝑌 ) ) | 
						
							| 17 | 16 | simp1d | ⊢ ( 𝜑  →  𝐶  ∈  ℝ ) | 
						
							| 18 | 17 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝜓  ∧  𝜃 ) )  →  𝐶  ∈  ℝ ) | 
						
							| 19 |  | elicc2 | ⊢ ( ( 𝑋  ∈  ℝ  ∧  𝑌  ∈  ℝ )  →  ( 𝐵  ∈  ( 𝑋 [,] 𝑌 )  ↔  ( 𝐵  ∈  ℝ  ∧  𝑋  ≤  𝐵  ∧  𝐵  ≤  𝑌 ) ) ) | 
						
							| 20 | 1 2 19 | syl2anc | ⊢ ( 𝜑  →  ( 𝐵  ∈  ( 𝑋 [,] 𝑌 )  ↔  ( 𝐵  ∈  ℝ  ∧  𝑋  ≤  𝐵  ∧  𝐵  ≤  𝑌 ) ) ) | 
						
							| 21 | 4 20 | mpbid | ⊢ ( 𝜑  →  ( 𝐵  ∈  ℝ  ∧  𝑋  ≤  𝐵  ∧  𝐵  ≤  𝑌 ) ) | 
						
							| 22 | 21 | simp1d | ⊢ ( 𝜑  →  𝐵  ∈  ℝ ) | 
						
							| 23 | 22 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝜓  ∧  𝜃 ) )  →  𝐵  ∈  ℝ ) | 
						
							| 24 |  | simpr | ⊢ ( ( 𝜑  ∧  ( 𝜓  ∧  𝜃 ) )  →  ( 𝜓  ∧  𝜃 ) ) | 
						
							| 25 | 24 8 | sylib | ⊢ ( ( 𝜑  ∧  ( 𝜓  ∧  𝜃 ) )  →  ( 𝐴  ≤  𝐵  ∧  𝐵  ≤  𝐶 ) ) | 
						
							| 26 | 25 | simpld | ⊢ ( ( 𝜑  ∧  ( 𝜓  ∧  𝜃 ) )  →  𝐴  ≤  𝐵 ) | 
						
							| 27 | 25 | simprd | ⊢ ( ( 𝜑  ∧  ( 𝜓  ∧  𝜃 ) )  →  𝐵  ≤  𝐶 ) | 
						
							| 28 |  | elicc2 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐶  ∈  ℝ )  →  ( 𝐵  ∈  ( 𝐴 [,] 𝐶 )  ↔  ( 𝐵  ∈  ℝ  ∧  𝐴  ≤  𝐵  ∧  𝐵  ≤  𝐶 ) ) ) | 
						
							| 29 | 12 17 28 | syl2anc | ⊢ ( 𝜑  →  ( 𝐵  ∈  ( 𝐴 [,] 𝐶 )  ↔  ( 𝐵  ∈  ℝ  ∧  𝐴  ≤  𝐵  ∧  𝐵  ≤  𝐶 ) ) ) | 
						
							| 30 | 29 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝜓  ∧  𝜃 ) )  →  ( 𝐵  ∈  ( 𝐴 [,] 𝐶 )  ↔  ( 𝐵  ∈  ℝ  ∧  𝐴  ≤  𝐵  ∧  𝐵  ≤  𝐶 ) ) ) | 
						
							| 31 | 23 26 27 30 | mpbir3and | ⊢ ( ( 𝜑  ∧  ( 𝜓  ∧  𝜃 ) )  →  𝐵  ∈  ( 𝐴 [,] 𝐶 ) ) | 
						
							| 32 | 1 | rexrd | ⊢ ( 𝜑  →  𝑋  ∈  ℝ* ) | 
						
							| 33 | 11 | simp2d | ⊢ ( 𝜑  →  𝑋  ≤  𝐴 ) | 
						
							| 34 |  | iooss1 | ⊢ ( ( 𝑋  ∈  ℝ*  ∧  𝑋  ≤  𝐴 )  →  ( 𝐴 (,) 𝐶 )  ⊆  ( 𝑋 (,) 𝐶 ) ) | 
						
							| 35 | 32 33 34 | syl2anc | ⊢ ( 𝜑  →  ( 𝐴 (,) 𝐶 )  ⊆  ( 𝑋 (,) 𝐶 ) ) | 
						
							| 36 | 2 | rexrd | ⊢ ( 𝜑  →  𝑌  ∈  ℝ* ) | 
						
							| 37 | 16 | simp3d | ⊢ ( 𝜑  →  𝐶  ≤  𝑌 ) | 
						
							| 38 |  | iooss2 | ⊢ ( ( 𝑌  ∈  ℝ*  ∧  𝐶  ≤  𝑌 )  →  ( 𝑋 (,) 𝐶 )  ⊆  ( 𝑋 (,) 𝑌 ) ) | 
						
							| 39 | 36 37 38 | syl2anc | ⊢ ( 𝜑  →  ( 𝑋 (,) 𝐶 )  ⊆  ( 𝑋 (,) 𝑌 ) ) | 
						
							| 40 | 35 39 | sstrd | ⊢ ( 𝜑  →  ( 𝐴 (,) 𝐶 )  ⊆  ( 𝑋 (,) 𝑌 ) ) | 
						
							| 41 | 40 | sselda | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 (,) 𝐶 ) )  →  𝑥  ∈  ( 𝑋 (,) 𝑌 ) ) | 
						
							| 42 |  | iblmbf | ⊢ ( ( 𝑥  ∈  ( 𝑋 (,) 𝑌 )  ↦  𝐷 )  ∈  𝐿1  →  ( 𝑥  ∈  ( 𝑋 (,) 𝑌 )  ↦  𝐷 )  ∈  MblFn ) | 
						
							| 43 | 7 42 | syl | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝑋 (,) 𝑌 )  ↦  𝐷 )  ∈  MblFn ) | 
						
							| 44 | 43 6 | mbfmptcl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑋 (,) 𝑌 ) )  →  𝐷  ∈  ℂ ) | 
						
							| 45 | 41 44 | syldan | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 (,) 𝐶 ) )  →  𝐷  ∈  ℂ ) | 
						
							| 46 | 45 | adantlr | ⊢ ( ( ( 𝜑  ∧  ( 𝜓  ∧  𝜃 ) )  ∧  𝑥  ∈  ( 𝐴 (,) 𝐶 ) )  →  𝐷  ∈  ℂ ) | 
						
							| 47 |  | iooss1 | ⊢ ( ( 𝑋  ∈  ℝ*  ∧  𝑋  ≤  𝐴 )  →  ( 𝐴 (,) 𝐵 )  ⊆  ( 𝑋 (,) 𝐵 ) ) | 
						
							| 48 | 32 33 47 | syl2anc | ⊢ ( 𝜑  →  ( 𝐴 (,) 𝐵 )  ⊆  ( 𝑋 (,) 𝐵 ) ) | 
						
							| 49 | 21 | simp3d | ⊢ ( 𝜑  →  𝐵  ≤  𝑌 ) | 
						
							| 50 |  | iooss2 | ⊢ ( ( 𝑌  ∈  ℝ*  ∧  𝐵  ≤  𝑌 )  →  ( 𝑋 (,) 𝐵 )  ⊆  ( 𝑋 (,) 𝑌 ) ) | 
						
							| 51 | 36 49 50 | syl2anc | ⊢ ( 𝜑  →  ( 𝑋 (,) 𝐵 )  ⊆  ( 𝑋 (,) 𝑌 ) ) | 
						
							| 52 | 48 51 | sstrd | ⊢ ( 𝜑  →  ( 𝐴 (,) 𝐵 )  ⊆  ( 𝑋 (,) 𝑌 ) ) | 
						
							| 53 |  | ioombl | ⊢ ( 𝐴 (,) 𝐵 )  ∈  dom  vol | 
						
							| 54 | 53 | a1i | ⊢ ( 𝜑  →  ( 𝐴 (,) 𝐵 )  ∈  dom  vol ) | 
						
							| 55 | 52 54 6 7 | iblss | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝐴 (,) 𝐵 )  ↦  𝐷 )  ∈  𝐿1 ) | 
						
							| 56 | 55 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝜓  ∧  𝜃 ) )  →  ( 𝑥  ∈  ( 𝐴 (,) 𝐵 )  ↦  𝐷 )  ∈  𝐿1 ) | 
						
							| 57 | 21 | simp2d | ⊢ ( 𝜑  →  𝑋  ≤  𝐵 ) | 
						
							| 58 |  | iooss1 | ⊢ ( ( 𝑋  ∈  ℝ*  ∧  𝑋  ≤  𝐵 )  →  ( 𝐵 (,) 𝐶 )  ⊆  ( 𝑋 (,) 𝐶 ) ) | 
						
							| 59 | 32 57 58 | syl2anc | ⊢ ( 𝜑  →  ( 𝐵 (,) 𝐶 )  ⊆  ( 𝑋 (,) 𝐶 ) ) | 
						
							| 60 | 59 39 | sstrd | ⊢ ( 𝜑  →  ( 𝐵 (,) 𝐶 )  ⊆  ( 𝑋 (,) 𝑌 ) ) | 
						
							| 61 |  | ioombl | ⊢ ( 𝐵 (,) 𝐶 )  ∈  dom  vol | 
						
							| 62 | 61 | a1i | ⊢ ( 𝜑  →  ( 𝐵 (,) 𝐶 )  ∈  dom  vol ) | 
						
							| 63 | 60 62 6 7 | iblss | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝐵 (,) 𝐶 )  ↦  𝐷 )  ∈  𝐿1 ) | 
						
							| 64 | 63 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝜓  ∧  𝜃 ) )  →  ( 𝑥  ∈  ( 𝐵 (,) 𝐶 )  ↦  𝐷 )  ∈  𝐿1 ) | 
						
							| 65 | 13 18 31 46 56 64 | itgsplitioo | ⊢ ( ( 𝜑  ∧  ( 𝜓  ∧  𝜃 ) )  →  ∫ ( 𝐴 (,) 𝐶 ) 𝐷  d 𝑥  =  ( ∫ ( 𝐴 (,) 𝐵 ) 𝐷  d 𝑥  +  ∫ ( 𝐵 (,) 𝐶 ) 𝐷  d 𝑥 ) ) | 
						
							| 66 | 13 23 18 26 27 | letrd | ⊢ ( ( 𝜑  ∧  ( 𝜓  ∧  𝜃 ) )  →  𝐴  ≤  𝐶 ) | 
						
							| 67 | 66 | ditgpos | ⊢ ( ( 𝜑  ∧  ( 𝜓  ∧  𝜃 ) )  →  ⨜ [ 𝐴  →  𝐶 ] 𝐷  d 𝑥  =  ∫ ( 𝐴 (,) 𝐶 ) 𝐷  d 𝑥 ) | 
						
							| 68 | 26 | ditgpos | ⊢ ( ( 𝜑  ∧  ( 𝜓  ∧  𝜃 ) )  →  ⨜ [ 𝐴  →  𝐵 ] 𝐷  d 𝑥  =  ∫ ( 𝐴 (,) 𝐵 ) 𝐷  d 𝑥 ) | 
						
							| 69 | 27 | ditgpos | ⊢ ( ( 𝜑  ∧  ( 𝜓  ∧  𝜃 ) )  →  ⨜ [ 𝐵  →  𝐶 ] 𝐷  d 𝑥  =  ∫ ( 𝐵 (,) 𝐶 ) 𝐷  d 𝑥 ) | 
						
							| 70 | 68 69 | oveq12d | ⊢ ( ( 𝜑  ∧  ( 𝜓  ∧  𝜃 ) )  →  ( ⨜ [ 𝐴  →  𝐵 ] 𝐷  d 𝑥  +  ⨜ [ 𝐵  →  𝐶 ] 𝐷  d 𝑥 )  =  ( ∫ ( 𝐴 (,) 𝐵 ) 𝐷  d 𝑥  +  ∫ ( 𝐵 (,) 𝐶 ) 𝐷  d 𝑥 ) ) | 
						
							| 71 | 65 67 70 | 3eqtr4d | ⊢ ( ( 𝜑  ∧  ( 𝜓  ∧  𝜃 ) )  →  ⨜ [ 𝐴  →  𝐶 ] 𝐷  d 𝑥  =  ( ⨜ [ 𝐴  →  𝐵 ] 𝐷  d 𝑥  +  ⨜ [ 𝐵  →  𝐶 ] 𝐷  d 𝑥 ) ) | 
						
							| 72 | 71 | anassrs | ⊢ ( ( ( 𝜑  ∧  𝜓 )  ∧  𝜃 )  →  ⨜ [ 𝐴  →  𝐶 ] 𝐷  d 𝑥  =  ( ⨜ [ 𝐴  →  𝐵 ] 𝐷  d 𝑥  +  ⨜ [ 𝐵  →  𝐶 ] 𝐷  d 𝑥 ) ) |